Baroreflex sensitivity is associated with markers of hippocampal gliosis and dysmyelination in patients with psychosis.
Baroreflex
H1-MR spectroscopic (MRS)
Hippocampus
Inflammation
Journal
Clinical autonomic research : official journal of the Clinical Autonomic Research Society
ISSN: 1619-1560
Titre abrégé: Clin Auton Res
Pays: Germany
ID NLM: 9106549
Informations de publication
Date de publication:
04 2023
04 2023
Historique:
received:
23
10
2022
accepted:
20
01
2023
medline:
15
5
2023
pubmed:
7
3
2023
entrez:
6
3
2023
Statut:
ppublish
Résumé
Hippocampal dysfunction plays a key role in the pathology of psychosis. Given hippocampal sensitivity to changes in cerebral perfusion, decreased baroreflex function could contribute to psychosis pathogenesis. This study had two aims: (1) To compare baroreflex sensitivity in participants with psychosis to two control groups: participants with a nonpsychotic affective disorder and participants with no history of psychiatric disease; (2) to examine the relationship between hippocampal neurometabolites and baroreflex sensitivities in these three groups. We hypothesized that baroreflex sensitivity would be reduced and correlated with hippocampal neurometabolite levels in participants with psychosis, but not in the control groups. We assessed baroreflex sensitivity during the Valsalva maneuver separated into vagal and adrenergic components. Metabolite concentrations for cellular processes were quantitated in the entire multivoxel hippocampus using H Vagal baroreflex sensitivity (BRS-V) was reduced in a significantly larger proportion of participants with psychosis compared with patients with nonpsychotic affective disorders, whereas participants with psychosis had increased adrenergic baroreflex sensitivity (BRS-A) compared with participants with no history of psychiatric disease. Only in psychotic cases were baroreflex sensitivities associated with hippocampal metabolite concentrations. Specifically, BRS-V was inversely correlated with myo-inositol, a marker of gliosis, and BRS-A was positively correlated with energy dependent dysmyelination (choline, creatine) and excitatory activity (GLX). Abnormal baroreflex sensitivity is common in participants with psychosis and is associated with MRS markers of hippocampal pathology. Future longitudinal studies are needed to examine causality.
Identifiants
pubmed: 36877302
doi: 10.1007/s10286-023-00929-x
pii: 10.1007/s10286-023-00929-x
doi:
Substances chimiques
Adrenergic Agents
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
101-110Subventions
Organisme : NIDDK NIH HHS
ID : R01 DK122853
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH110418
Pays : United States
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany.
Références
Ogoh S, Tarumi T (2019) Cerebral blood flow regulation and cognitive function: a role of arterial baroreflex function. J Physiol Sci 69(6):813–823. https://doi.org/10.1007/s12576-019-00704-6
doi: 10.1007/s12576-019-00704-6
pubmed: 31444691
Ogoh S et al (2010) Influence of baroreflex-mediated tachycardia on the regulation of dynamic cerebral perfusion during acute hypotension in humans. J Physiol 588(Pt 2):365–371. https://doi.org/10.1113/jphysiol.2009.180844
doi: 10.1113/jphysiol.2009.180844
pubmed: 19933752
Purkayastha S et al (2018) The influence of the carotid baroreflex on dynamic regulation of cerebral blood flow and cerebral tissue oxygenation in humans at rest and during exercise. Eur J Appl Physiol 118(5):959–969. https://doi.org/10.1007/s00421-018-3831-1
doi: 10.1007/s00421-018-3831-1
pubmed: 29497836
De Ferrari GM et al (2007) Baroreflex sensitivity predicts long-term cardiovascular mortality after myocardial infarction even in patients with preserved left ventricular function. J Am Coll Cardiol 50(24):2285–2290. https://doi.org/10.1016/j.jacc.2007.08.043
doi: 10.1016/j.jacc.2007.08.043
pubmed: 18068036
Adamec I et al (2013) Postural orthostatic tachycardia syndrome associated with multiple sclerosis. Auton Neurosci 173(1–2):65–68. https://doi.org/10.1016/j.autneu.2012.11.009
doi: 10.1016/j.autneu.2012.11.009
pubmed: 23246200
Habek M et al (2017) Postural orthostatic tachycardia predicts early conversion to multiple sclerosis after clinically isolated syndrome. Eur Neurol 77(5–6):253–257. https://doi.org/10.1159/000469707
doi: 10.1159/000469707
pubmed: 28376495
den Abeelen ASM et al (2013) Baroreflex function is reduced in Alzheimer’s disease: a candidate biomarker? Neurobiol Aging 34(4):1170–1176. https://doi.org/10.1016/j.neurobiolaging.2012.10.010
doi: 10.1016/j.neurobiolaging.2012.10.010
Femminella GD et al (2014) Autonomic dysfunction in Alzheimer’s disease: tools for assessment and review of the literature. J Alzheimers Dis 42(2):369–377. https://doi.org/10.3233/JAD-140513
doi: 10.3233/JAD-140513
pubmed: 24898649
Laosiripisan J et al (2015) Association between cardiovagal baroreflex sensitivity and baseline cerebral perfusion of the hippocampus. Clin Auton Res 25(4):213–218. https://doi.org/10.1007/s10286-015-0296-8
doi: 10.1007/s10286-015-0296-8
pubmed: 26280218
Tzeng YC, Willie CK, Ainslie PN (2010) Baroreflex, cerebral perfusion, and stroke: integrative physiology at its best. Stroke 41(5):e429. https://doi.org/10.1161/STROKEAHA.109.570853
doi: 10.1161/STROKEAHA.109.570853
pubmed: 20360552
Pendlebury ST, Rothwell PM (2016) Brain atrophy, N-terminal brain natriuretic peptide, and carotid disease: interconnecting relationships between cerebral perfusion, cardiovascular disease, inflammation, and cognitive decline. Arterioscler Thromb Vasc Biol 36(11):2141–2142. https://doi.org/10.1161/ATVBAHA.116.308362
doi: 10.1161/ATVBAHA.116.308362
pubmed: 27784701
Cao H, Cannon TD (2020) New evidence supporting a role of hippocampus in the development of psychosis. Biol Psychiatry 87(3):200–201. https://doi.org/10.1016/j.biopsych.2019.10.017
doi: 10.1016/j.biopsych.2019.10.017
pubmed: 31908287
McHugo M et al (2019) Hyperactivity and reduced activation of anterior hippocampus in early psychosis. Am J Psychiatry 176(12):1030–1038. https://doi.org/10.1176/appi.ajp.2019.19020151
doi: 10.1176/appi.ajp.2019.19020151
pubmed: 31623459
pmcid: 7716419
Allen P et al (2016) Resting hyperperfusion of the hippocampus, midbrain, and Basal Ganglia in people at high risk for psychosis. Am J Psychiatry 173(4):392–399. https://doi.org/10.1176/appi.ajp.2015.15040485
doi: 10.1176/appi.ajp.2015.15040485
pubmed: 26684922
Briend F et al (2020) Hippocampal glutamate and hippocampus subfield volumes in antipsychotic-naive first episode psychosis subjects and relationships to duration of untreated psychosis. Transl Psychiatry 10(1):137. https://doi.org/10.1038/s41398-020-0812-z
doi: 10.1038/s41398-020-0812-z
pubmed: 32398671
pmcid: 7217844
Doorduin J et al (2009) Neuroinflammation in schizophrenia-related psychosis: a PET study. J Nucl Med 50(11):1801–1807. https://doi.org/10.2967/jnumed.109.066647
doi: 10.2967/jnumed.109.066647
pubmed: 19837763
Malaspina D et al (2020) Hippocampal metabolite concentrations in schizophrenia vary in association with rare gene variants in the TRIO gene. Schizophr Res 224:167–169. https://doi.org/10.1016/j.schres.2020.11.001
doi: 10.1016/j.schres.2020.11.001
pubmed: 33183947
Clamor A et al (2016) Resting vagal activity in schizophrenia: meta-analysis of heart rate variability as a potential endophenotype. Br J Psychiatry 208(1):9–16. https://doi.org/10.1192/bjp.bp.114.160762
doi: 10.1192/bjp.bp.114.160762
pubmed: 26729841
Jung W, Jang KI, Lee SH (2019) Heart and brain interaction of psychiatric illness: a review focused on heart rate variability, cognitive function, and quantitative electroencephalography. Clin Psychopharmacol Neurosci 17(4):459–474. https://doi.org/10.9758/cpn.2019.17.4.459
doi: 10.9758/cpn.2019.17.4.459
pubmed: 31671483
pmcid: 6852682
Zhang Y et al (2020) Heart rate variability changes in patients with panic disorder. J Affect Disord 267:297–306. https://doi.org/10.1016/j.jad.2020.01.132
doi: 10.1016/j.jad.2020.01.132
pubmed: 32217230
Malaspina D et al (1997) Diminished cardiac vagal tone in schizophrenia: associations to brain laterality and age of onset. Biol Psychiatry 41(5):612–617. https://doi.org/10.1016/s0006-3223(96)00161-8
doi: 10.1016/s0006-3223(96)00161-8
pubmed: 9046993
Wei L, Chen H, Wu G-R (2018) Structural covariance of the prefrontal-amygdala pathways associated with heart rate variability. Front Human Neurosci. https://doi.org/10.3389/fnhum.2018.00002
doi: 10.3389/fnhum.2018.00002
Kaufmann H, Norcliffe-Kaufmann L, Palma JA (2020) Baroreflex dysfunction. N Engl J Med 382(2):163–178. https://doi.org/10.1056/NEJMra1509723
doi: 10.1056/NEJMra1509723
pubmed: 31914243
Fritze S et al (2019) Differential contributions of brainstem structures to neurological soft signs in first- and multiple-episode schizophrenia spectrum disorders. Schizophr Res 210:101–106. https://doi.org/10.1016/j.schres.2019.05.041
doi: 10.1016/j.schres.2019.05.041
pubmed: 31178363
Gupta CN et al (2015) Patterns of gray matter abnormalities in schizophrenia based on an international mega-analysis. Schizophr Bull 41(5):1133–1142. https://doi.org/10.1093/schbul/sbu177
doi: 10.1093/schbul/sbu177
pubmed: 25548384
Palamarchuk IS, Baker J, Kimpinski K (2016) The utility of Valsalva maneuver in the diagnoses of orthostatic disorders. Am J Physiol Regul Integr Comp Physiol 310(3):R243–R252. https://doi.org/10.1152/ajpregu.00290.2015
doi: 10.1152/ajpregu.00290.2015
pubmed: 26491102
Henderson LA et al (2002) Brain responses associated with the Valsalva maneuver revealed by functional magnetic resonance imaging. J Neurophysiol 88(6):3477–3486. https://doi.org/10.1152/jn.00107.2002
doi: 10.1152/jn.00107.2002
pubmed: 12466462
Sandroni P et al (2000) Mechanisms of blood pressure alterations in response to the Valsalva maneuver in postural tachycardia syndrome. Clin Auton Res 10(1):1–5. https://doi.org/10.1007/BF02291382
doi: 10.1007/BF02291382
pubmed: 10750636
Maghsudi H et al (2020) Regional metabolite concentrations in aging human brain: comparison of short-TE whole brain MR spectroscopic imaging and single voxel spectroscopy at 3T. Clin Neuroradiol 30(2):251–261. https://doi.org/10.1007/s00062-018-00757-x
doi: 10.1007/s00062-018-00757-x
pubmed: 30659340
Nosaka S (1996) Modifications of arterial baroreflexes: obligatory roles in cardiovascular regulation in stress and poststress recovery. Jpn J Physiol 46(4):271–288. https://doi.org/10.2170/jjphysiol.46.271
doi: 10.2170/jjphysiol.46.271
pubmed: 8988438
Joe P et al (2021) An integrative study of the microbiome gut-brain-axis and hippocampal inflammation in psychosis: persistent effects from mode of birth. Schizophr Res. https://doi.org/10.1016/j.schres.2021.09.019
doi: 10.1016/j.schres.2021.09.019
pubmed: 34625336
Nurnberger JI Jr et al (1994) Diagnostic interview for genetic studies. Rationale, unique features, and training. NIMH Genetics Initiative. Arch Gen Psychiatry 51(11):849–59. https://doi.org/10.1001/archpsyc.1994.03950110009002 . (discussion 863-4)
doi: 10.1001/archpsyc.1994.03950110009002
pubmed: 7944874
Pato MT et al (2013) The genomic psychiatry cohort: partners in discovery. Am J Med Genet B Neuropsychiatr Genet 162B(4):306–312. https://doi.org/10.1002/ajmg.b.32160
doi: 10.1002/ajmg.b.32160
pubmed: 23650244
American Psychiatric Association (2014) Diagnostic and statistical manual of mental disorders, 5th edn. American Psychiatric Association, Washington DC
Low PA (2003) Testing the autonomic nervous system. Semin Neurol 23(4):407–421. https://doi.org/10.1055/s-2004-817725
doi: 10.1055/s-2004-817725
pubmed: 15088262
Palamarchuk I et al (2014) Baroreflex sensitivity: reliability of baroreflex components of the Valsalva maneuver. Auton Neurosci 185:138–140. https://doi.org/10.1016/j.autneu.2014.05.002
doi: 10.1016/j.autneu.2014.05.002
pubmed: 24862158
Thayer JF, Lane RD (2009) Claude Bernard and the heart-brain connection: further elaboration of a model of neurovisceral integration. Neurosci Biobehav Rev 33(2):81–88. https://doi.org/10.1016/j.neubiorev.2008.08.004
doi: 10.1016/j.neubiorev.2008.08.004
pubmed: 18771686
Low PA (1993) Composite autonomic scoring scale for laboratory quantification of generalized autonomic failure. Mayo Clin Proc 68(8):748–752
doi: 10.1016/S0025-6196(12)60631-4
pubmed: 8392653
Schrezenmaier C et al (2007) Adrenergic and vagal baroreflex sensitivity in autonomic failure. Arch Neurol 64(3):381–386. https://doi.org/10.1001/archneur.64.3.381
doi: 10.1001/archneur.64.3.381
pubmed: 17353381
Sandroni P, Benarroch EE, Low PA (1991) Pharmacological dissection of components of the Valsalva maneuver in adrenergic failure. J Appl Physiol (1985) 71(4):1563–7. https://doi.org/10.1152/jappl.1991.71.4.1563
doi: 10.1152/jappl.1991.71.4.1563
pubmed: 1757382
Fendrich SJ et al (2022) Patient-reported exposures and outcomes link the gut-brain axis and inflammatory pathways to specific symptoms of severe mental illness. Psychiatry Res 312:114526. https://doi.org/10.1016/j.psychres.2022.114526
doi: 10.1016/j.psychres.2022.114526
pubmed: 35462090
Broadley AJ et al (2005) Baroreflex sensitivity is reduced in depression. Psychosom Med 67(4):648–651. https://doi.org/10.1097/01.psy.0000170829.91643.24
doi: 10.1097/01.psy.0000170829.91643.24
pubmed: 16046382
Park J et al (2017) Baroreflex dysfunction and augmented sympathetic nerve responses during mental stress in veterans with post-traumatic stress disorder. J Physiol 595(14):4893–4908. https://doi.org/10.1113/JP274269
doi: 10.1113/JP274269
pubmed: 28503726
pmcid: 5509856
Fritze S et al (2020) Brainstem alterations contribute to catatonia in schizophrenia spectrum disorders. Schizophr Res 224:82–87. https://doi.org/10.1016/j.schres.2020.09.025
doi: 10.1016/j.schres.2020.09.025
pubmed: 33046340
Hirjak D et al (2013) Neurological soft signs and brainstem morphology in first-episode schizophrenia. Neuropsychobiology 68(2):91–99. https://doi.org/10.1159/000350999
doi: 10.1159/000350999
pubmed: 23881157
Allswede DM, Cannon TD (2018) Prenatal inflammation and risk for schizophrenia: a role for immune proteins in neurodevelopment. Dev Psychopathol 30(3):1157–1178. https://doi.org/10.1017/S0954579418000317
doi: 10.1017/S0954579418000317
pubmed: 30068405
Dunleavy C et al (2022) Inflammation in first-episode psychosis: the contribution of inflammatory biomarkers to the emergence of negative symptoms, a systematic review and meta-analysis. Acta Psychiatr Scand. https://doi.org/10.1111/acps.13416
doi: 10.1111/acps.13416
pubmed: 35202480
pmcid: 9310618
Williams DP et al (2019) Heart rate variability and inflammation: a meta-analysis of human studies. Brain Behav Immun 80:219–226. https://doi.org/10.1016/j.bbi.2019.03.009
doi: 10.1016/j.bbi.2019.03.009
pubmed: 30872091
Robinson-Papp J et al (2020) Sympathetic function and markers of inflammation in well-controlled HIV. Brain Behav Immun Health 7:100112. https://doi.org/10.1016/j.bbih.2020.100112
doi: 10.1016/j.bbih.2020.100112
pubmed: 34589872
pmcid: 8474355
Gomes FV (2022) Altered ventral striatum-hippocampus connectivity during reward processing as an endophenotype for psychosis. Biol Psychiatry 91(2):e7–e9. https://doi.org/10.1016/j.biopsych.2021.10.019
doi: 10.1016/j.biopsych.2021.10.019
pubmed: 34916030
Gregory DF et al (2021) Increased functional coupling between VTA and hippocampus during rest in first-episode psychosis. eNeuro. https://doi.org/10.1523/ENEURO.0375-20.2021
doi: 10.1523/ENEURO.0375-20.2021
pubmed: 33658310
pmcid: 7986546
Kraguljac NV et al (2021) Neuroimaging biomarkers in schizophrenia. Am J Psychiatry 178(6):509–521. https://doi.org/10.1176/appi.ajp.2020.20030340
doi: 10.1176/appi.ajp.2020.20030340
pubmed: 33397140
pmcid: 8222104
Malaspina D et al (2021) Preliminary findings associate hippocampal (1)H-MR spectroscopic metabolite concentrations with psychotic and manic symptoms in patients with schizophrenia. AJNR Am J Neuroradiol 42(1):88–93. https://doi.org/10.3174/ajnr.A6879
doi: 10.3174/ajnr.A6879
pubmed: 33184071
pmcid: 7814798
Meyer EJ et al (2016) Metabolic abnormalities in the hippocampus of patients with schizophrenia: a 3D multivoxel MR spectroscopic imaging study at 3T. AJNR Am J Neuroradiol 37(12):2273–2279. https://doi.org/10.3174/ajnr.A4886
doi: 10.3174/ajnr.A4886
pubmed: 27444940
pmcid: 5161606
Kim S et al (2016) Differential activation of immune/inflammatory response-related co-expression modules in the hippocampus across the major psychiatric disorders. Mol Psychiatry 21(3):376–385. https://doi.org/10.1038/mp.2015.79
doi: 10.1038/mp.2015.79
pubmed: 26077692
Catts VS et al (2014) Increased expression of astrocyte markers in schizophrenia: association with neuroinflammation. Aust N Z J Psychiatry 48(8):722–734. https://doi.org/10.1177/0004867414531078
doi: 10.1177/0004867414531078
pubmed: 24744400
Nuriya M, Hirase H (2016) Involvement of astrocytes in neurovascular communication. Prog Brain Res 225:41–62. https://doi.org/10.1016/bs.pbr.2016.02.001
doi: 10.1016/bs.pbr.2016.02.001
pubmed: 27130410
Bar KJ et al (2005) Loss of efferent vagal activity in acute schizophrenia. J Psychiatr Res 39(5):519–527. https://doi.org/10.1016/j.jpsychires.2004.12.007
doi: 10.1016/j.jpsychires.2004.12.007
pubmed: 15992561
Bunce SC et al (2005) High prevalence of personality disorders among healthy volunteers for research: implications for control group bias. J Psychiatr Res 39(4):421–430. https://doi.org/10.1016/j.jpsychires.2004.09.005
doi: 10.1016/j.jpsychires.2004.09.005
pubmed: 15804393
Zandersen M, Parnas J (2019) Borderline personality disorder or a disorder within the schizophrenia spectrum? A psychopathological study. World Psychiatry 18(1):109–110. https://doi.org/10.1002/wps.20598
doi: 10.1002/wps.20598
pubmed: 30600641
pmcid: 6313234
West ML, Guest RM, Carmel A (2021) Comorbid early psychosis and borderline personality disorder: conceptualizing clinical overlap, etiology, and treatment. Personal Ment Health 15(3):208–222. https://doi.org/10.1002/pmh.1509
doi: 10.1002/pmh.1509
pubmed: 33955194
Oades RD, Zimmermann B, Eggers C (1996) Conditioned blocking in patients with paranoid, non-paranoid psychosis or obsessive compulsive disorder: associations with symptoms, personality and monoamine metabolism. J Psychiatr Res 30(5):369–390. https://doi.org/10.1016/0022-3956(96)00006-4
doi: 10.1016/0022-3956(96)00006-4
pubmed: 8923341
Pec O, Bob P, Raboch J (2014) Dissociation in schizophrenia and borderline personality disorder. Neuropsychiatr Dis Treat 10:487–491. https://doi.org/10.2147/NDT.S57627
doi: 10.2147/NDT.S57627
pubmed: 24672239
pmcid: 3964156
Geiss L et al (2021) Cardiovascular autonomic modulation during metronomic breathing and stress exposure in patients with borderline personality disorder. Neuropsychobiology 80(5):359–373. https://doi.org/10.1159/000511543
doi: 10.1159/000511543
pubmed: 33582662
Back SN et al (2022) Reduced vagal activity in borderline personality disorder is unaffected by intranasal oxytocin administration, but predicted by the interaction between childhood trauma and attachment insecurity. J Neural Transm (Vienna) 129(4):409–419. https://doi.org/10.1007/s00702-022-02482-9
doi: 10.1007/s00702-022-02482-9
pubmed: 35275249
Schmahl CG et al (2004) Psychophysiological reactivity to traumatic and abandonment scripts in borderline personality and posttraumatic stress disorders: a preliminary report. Psychiatry Res 126(1):33–42. https://doi.org/10.1016/j.psychres.2004.01.005
doi: 10.1016/j.psychres.2004.01.005
pubmed: 15081625
Herpertz SC et al (1999) Affective responsiveness in borderline personality disorder: a psychophysiological approach. Am J Psychiatry 156(10):1550–1556. https://doi.org/10.1176/ajp.156.10.1550
doi: 10.1176/ajp.156.10.1550
pubmed: 10518165
Juengling FD et al (2003) Positron emission tomography in female patients with borderline personality disorder. J Psychiatr Res 37(2):109–115. https://doi.org/10.1016/s0022-3956(02)00084-5
doi: 10.1016/s0022-3956(02)00084-5
pubmed: 12842164