Design, synthesis, and biological evaluation of pleuromutilin derivatives containing 1,2,4-triazole linker.


Journal

Drug development research
ISSN: 1098-2299
Titre abrégé: Drug Dev Res
Pays: United States
ID NLM: 8204468

Informations de publication

Date de publication:
Jun 2023
Historique:
revised: 13 02 2023
received: 04 11 2022
accepted: 19 02 2023
medline: 12 6 2023
pubmed: 11 3 2023
entrez: 10 3 2023
Statut: ppublish

Résumé

A series of thioether pleuromutilin derivatives containing 1,2,4-triazole on the side chain of C14 were designed and synthesized. The in vitro antibacterial activities experiments of the synthesized derivatives showed that compounds 72 and 73 displayed superior in vitro antibacterial effect against MRSA minimal inhibitory concentration (MIC = 0.0625 μg/mL) than tiamulin (MIC = 0.5 μg/mL). The results of time-kill study and postantibiotic effect study indicated that compound 72 could inhibit the growth of MRSA quickly (-2.16 log

Identifiants

pubmed: 36896715
doi: 10.1002/ddr.22050
doi:

Substances chimiques

1,2,4-triazole 288-88-0
Anti-Bacterial Agents 0
Polycyclic Compounds 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

703-717

Subventions

Organisme : Guangdong Special Support Program innovation team
Organisme : National Key Research and Development Program of China
Organisme : Guangdong Natural Science Funds for Distinguished Young Scholar

Informations de copyright

© 2023 Wiley Periodicals LLC.

Références

Athamna, A. (2004). In vitro post-antibiotic effect of fluoroquinolones, macrolides, β-lactams, tetracyclines, vancomycin, clindamycin, linezolid, chloramphenicol, quinupristin/dalfopristin and rifampicin on bacillus anthracis. Journal of Antimicrobial Chemotherapy, 53(4), 609-615. https://doi.org/10.1093/jac/dkh130
Boswell, F. J., Andrews, J. M., & Wise, R. (1997). Pharmacodynamic properties of faropenem demonstrated by studies of time-kill kinetics and postantibiotic effect. Journal of Antimicrobial Chemotherapy, 39(3), 415-418. https://doi.org/10.1093/jac/39.3.415
Cha, J. O., Park, Y. K., Lee, Y. S., & Chung, G. T. (2011). In vitro biofilm formation and bactericidal activities of methicillin-resistant Staphylococcus aureus clones prevalent in Korea. Diagnostic Microbiology and Infectious Disease, 70(1), 112-118. https://doi.org/10.1016/j.diagmicrobio.2010.11.018
Chirkina, E., & Larina, L. (2022). Quantum-chemical study of organic reaction mechanisms. XI.*1 biologically active 4-substituted 1,2,4-triazoles from diformylhydrazine and aminophenols. Structural Chemistry, 33, 2023-2032. https://doi.org/10.1007/s11224-022-01969-1
Gao, M. L., Zeng, J., Fang, X., Luo, J., Jin, Z., Liu, Y. H., & Tang, Y. Z. (2017). Design, synthesis and antibacterial evaluation of novel pleuromutilin derivatives possessing piperazine linker. European Journal of Medicinal Chemistry, 127, 286-295. https://doi.org/10.1016/j.ejmech.2017.01.004
Grema, H. A. (2015). Methicillin resistant Staphylococcus aureus (MRSA): A review. Advances in Animal and Veterinary Sciences, 3(2), 79-98. https://doi.org/10.14737/journal.aavs/2015/3.2.79.98
Hirokawa, Y., Kinoshita, H., Tanaka, T., Nakamura, T., Fujimoto, K., Kashimoto, S., Kojima, T., & Kato, S. (2009). Pleuromutilin derivatives having a purine ring. part 3: Synthesis and antibacterial activity of novel compounds possessing a piperazine ring spacer. Bioorganic & Medicinal Chemistry Letters, 19(1), 175-179. https://doi.org/10.1016/j.bmcl.2008.10.127
Hogenauer, G. (1975). The mode of action of pleuromutilin derivatives. location and properties of the pleuromutilin binding site on Escherichia coli ribosomes. European Journal of Biochemistry, 52(1), 93-98. https://doi.org/10.1111/j.1432-1033.1975.tb03976.x
Jin, Z., Wang, L., Gao, H., Zhou, Y. H., Liu, Y. H., & Tang, Y. Z. (2019). Design, synthesis and biological evaluation of novel pleuromutilin derivatives possessing acetamine phenyl linker. European Journal of Medicinal Chemistry, 181, 111594. https://doi.org/10.1016/j.ejmech.2019.111594
Kasiakou, S. K., Lawrence, K. R., Choulis, N., & Falagas, M. E. (2005). Continuous versus intermittent intravenous administration of antibacterials with time-dependent action: A systematic review of pharmacokinetic and pharmacodynamic parameters. Drugs, 65(17), 2499-2511. https://doi.org/10.2165/00003495-200565170-00006
Kavanagh, F., Hervey, A., & Robbins, W. J. (1951). Antibiotic substances from basidiomycetes: VIII. pleurotus multilus (Fr.) sacc. and pleurotus passeckerianus pilat. Proceedings of the National Academy of Sciences, 37(9), 570-574. https://doi.org/10.1073/pnas.37.9.570
Klein, E., Smith, D. L., & Laxminarayan, R. (2007). Hospitalizations and deaths caused by methicillin-resistant Staphylococcus aureus, United States, 1999-2005. Emerging Infectious Diseases, 13(12), 1840-1846. https://doi.org/10.3201/eid1312.070629
Lee, Y. R., & Jacobs, K. L. (2019). Leave it to lefamulin: A pleuromutilin treatment option in Community-Acquired bacterial pneumonia. Drugs, 79(17), 1867-1876. https://doi.org/10.1007/s40265-019-01219-5
Leonard, F. C., & Markey, B. K. (2008). Meticillin-resistant Staphylococcus aureus in animals: A review. The Veterinary Journal, 175(1), 27-36. https://doi.org/10.1016/j.tvjl.2006.11.008
Li, B., Zhang, Z., Zhang, J. F., Liu, J., Zuo, X. Y., Chen, F., Zhang, G. Y., Fang, H. Q., Jin, Z., & Tang, Y. Z. (2021). Design, synthesis and biological evaluation of pleuromutilin-schiff base hybrids as potent anti-MRSA agents in vitro and in vivo. European Journal of Medicinal Chemistry, 223, 113624. https://doi.org/10.1016/j.ejmech.2021.113624
Liu, J., Zhang, G. Y., Zhang, Z., Li, B., Chai, F., Wang, Q., Zhou, Z. D., Xu, L. L., Wang, S. K., Jin, Z., & Tang, Y. Z. (2021). Design, synthesis, in vitro and in vivo evaluation against MRSA and molecular docking studies of novel pleuromutilin derivatives bearing 1, 3, 4-oxadiazole linker. Bioorganic Chemistry, 112, 104956. https://doi.org/10.1016/j.bioorg.2021.104956
Monecke, S., Coombs, G., Shore, A. C., Coleman, D. C., Akpaka, P., Borg, M., Chow, H., Ip, M., Jatzwauk, L., Jonas, D., Kadlec, K., Kearns, A., Laurent, F., O'Brien, F. G., Pearson, J., Ruppelt, A., Schwarz, S., Scicluna, E., Slickers, P., … Ehricht, R. (2011). A field guide to pandemic, epidemic and sporadic clones of methicillin-resistant Staphylococcus aureus. PLoS One, 6(4), e17936. https://doi.org/10.1371/journal.pone.0017936
Morgan, M. (2008). Methicillin-resistant Staphylococcus aureus and animals: zoonosis or humanosis. Journal of Antimicrobial Chemotherapy, 62(6), 1181-1187. https://doi.org/10.1093/jac/dkn405
Schlünzen, F., Pyetan, E., Fucini, P., Yonath, A., & Harms, J. M. (2004). Inhibition of peptide bond formation by pleuromutilins: The structure of the 50S ribosomal subunit from deinococcus radiodurans in complex with tiamulin. Molecular Microbiology, 54(5), 1287-1294. https://doi.org/10.1111/j.1365-2958.2004.04346.x
Shang, R., Pu, X., Xu, X., Xin, Z., Zhang, C., Guo, W., Liu, Y., & Liang, J. (2014). Synthesis and biological activities of novel pleuromutilin derivatives with a substituted thiadiazole moiety as potent drug-resistant bacteria inhibitors. Journal of Medicinal Chemistry, 57(13), 5664-5678. https://doi.org/10.1021/jm500374c
Stefani, S., Chung, D. R., Lindsay, J. A., Friedrich, A. W., Kearns, A. M., Westh, H., & Mackenzie, F. M. (2012). Meticillin-resistant Staphylococcus aureus (MRSA): Global epidemiology and harmonisation of typing methods. International Journal of Antimicrobial Agents, 39(4), 273-282. https://doi.org/10.1016/j.ijantimicag.2011.09.030
van Duijkeren, E., Greko, C., Pringle, M., Baptiste, K. E., Catry, B., Jukes, H., Moreno, M. A., Pomba, M. C. M. F., Pyorala, S., Rantala, M., Ru auskas, M., Sanders, P., Teale, C., Threlfall, E. J., Torren-Edo, J., & Torneke, K. (2014). Pleuromutilins: Use in food-producing animals in the European Union, development of resistance and impact on human and animal health. Journal of Antimicrobial Chemotherapy, 69(8), 2022-2031. https://doi.org/10.1093/jac/dku123
Yang, P., Luo, J. B., Wang, Z. Z., Zhang, L. L., Feng, J., Xie, X. B., Shi, Q. S., & Zhang, X. G. (2021). Synthesis, molecular docking, and evaluation of antibacterial activity of 1,2,4-triazole-norfloxacin hybrids. Bioorganic Chemistry, 115, 105270. https://doi.org/10.1016/j.bioorg.2021.105270
Zhang, G. Y., Zhang, Z., Li, K., Liu, J., Li, B., Jin, Z., Liu, Y. H., & Tang, Y. Z. (2020). Design, synthesis and biological evaluation of novel pleuromutilin derivatives containing piperazine and 1,2,3-triazole linker. Bioorganic Chemistry, 105, 104398. https://doi.org/10.1016/j.bioorg.2020.104398
Zhang, J., Wang, S., Ba, Y., & Xu, Z. (2019). 1,2,4-Triazole-quinoline/quinolone hybrids as potential anti-bacterial agents. European Journal of Medicinal Chemistry, 174, 1-8. https://doi.org/10.1016/j.ejmech.2019.04.033
Zhang, Z. S., Huang, Y. Z., Luo, J., Jin, Z., Liu, Y. H., & Tang, Y. Z. (2018). Synthesis and antibacterial activities of novel pleuromutilin derivatives bearing an aminothiophenol moiety. Chemical Biology & Drug Design, 92(3), 1627-1637. https://doi.org/10.1111/cbdd.13328
Zuo, X., Fang, X., Zhang, Z., Jin, Z., Xi, G., Liu, Y., & Tang, Y. (2020). Antibacterial activity and pharmacokinetic profile of a promising antibacterial agent: 22-(2-Amino-phenylsulfanyl)-22-Deoxypleuromutilin. Molecules, 25(4), 878. https://doi.org/10.3390/molecules25040878

Auteurs

Zi-Dan Zhou (ZD)

Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.

Yu-Han Hu (YH)

Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.

Qi Wang (Q)

Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.

Heng Xu (H)

Technology Center for China Tobacco Henan Industrial Limited Company, Zhengzhou, Henan, China.

Gao-Lei Xi (GL)

Technology Center for China Tobacco Henan Industrial Limited Company, Zhengzhou, Henan, China.

Yan Liu (Y)

Guangdong Province Department of Agriculture and Rural Affairs, Guangdong Centre for Agricultural Products Quality and Safety, Guangzhou, China.

Liang Gu (L)

Technology Center for China Tobacco Henan Industrial Limited Company, Zhengzhou, Henan, China.

Zhen Jin (Z)

Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.

You-Zhi Tang (YZ)

Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.

Articles similaires

Vancomycin-associated DRESS demonstrates delay in AST abnormalities.

Ahmed Hussein, Kateri L Schoettinger, Jourdan Hydol-Smith et al.
1.00
Humans Drug Hypersensitivity Syndrome Vancomycin Female Male
Humans Arthroplasty, Replacement, Elbow Prosthesis-Related Infections Debridement Anti-Bacterial Agents
Animals Hemiptera Insect Proteins Phylogeny Insecticides
Vancomycin Polyesters Anti-Bacterial Agents Models, Theoretical Drug Liberation

Classifications MeSH