Predicting heart failure onset in the general population using a novel data-mining artificial intelligence method.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
16 03 2023
16 03 2023
Historique:
received:
09
08
2022
accepted:
14
03
2023
entrez:
17
3
2023
pubmed:
18
3
2023
medline:
22
3
2023
Statut:
epublish
Résumé
We aimed to identify combinations of clinical factors that predict heart failure (HF) onset using a novel limitless-arity multiple-testing procedure (LAMP). We also determined if increases in numbers of predictive combinations of factors increases the probability of developing HF. We recruited people without HF who received health check-ups in 2010, who were followed annually for 4 years. Using 32,547 people, LAMP was performed to identify combinations of factors of fewer than four factors that could predict the onset of HF. The ability of the method to predict the probability of HF onset based on the number of matching predictive combinations of factors was determined in 275,658 people. We identified 549 combinations of factors for the onset of HF. Then we classified 275,658 people into six groups who had 0, 1-50, 51-100, 101-150, 151-200 or 201-250 predictive combinations of factors for the onset of HF. We found that the probability of HF progressively increased as the number of predictive combinations of factors increased. We identified combinations of variables that predict HF onset. An increased number of matching predictive combinations for the onset of HF increased the probability of HF onset.
Identifiants
pubmed: 36928666
doi: 10.1038/s41598-023-31600-0
pii: 10.1038/s41598-023-31600-0
pmc: PMC10020464
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
4352Informations de copyright
© 2023. The Author(s).
Références
Circ J. 2022 Nov 25;86(12):2045-2119
pubmed: 36328514
Nat Rev Cardiol. 2011 Jan;8(1):30-41
pubmed: 21060326
Cardiovasc Drugs Ther. 2004 Nov;18(6):483-9
pubmed: 15770436
Circ J. 2007 Apr;71(4):449-54
pubmed: 17384441
J Med Syst. 2002 Oct;26(5):445-63
pubmed: 12182209
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:2530-3
pubmed: 26736807
J Am Med Inform Assoc. 2017 Mar 1;24(2):361-370
pubmed: 27521897
Cardiovasc Drugs Ther. 2020 Aug;34(4):535-545
pubmed: 32399803
Cardiovasc Drugs Ther. 2020 Feb;34(1):79-88
pubmed: 32076931
J Atheroscler Thromb. 2005;12(6):295-300
pubmed: 16394610
EBioMedicine. 2018 Jul;33:185-195
pubmed: 29936136
Eur Heart J. 2012 Jul;33(14):1787-847
pubmed: 22611136
J Am Coll Cardiol. 2019 May 21;73(19):2388-2397
pubmed: 31097157
Cardiovasc Drugs Ther. 2015 Jun;29(3):309-15
pubmed: 26095683
Circulation. 2021 Jun 15;143(24):2370-2383
pubmed: 33845593
J Card Fail. 2017 Sep;23(9):680-687
pubmed: 28336380
Med Care. 2010 Jun;48(6 Suppl):S106-13
pubmed: 20473190
J Am Coll Cardiol. 1993 Oct;22(4 Suppl A):6A-13A
pubmed: 8376698
Lancet. 2018 Feb 10;391(10120):572-580
pubmed: 29174292
N Engl J Med. 1971 Dec 23;285(26):1441-6
pubmed: 5122894
Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):12996-3001
pubmed: 23882073