An electrochemical sensing platform with a molecularly imprinted polymer based on chitosan-stabilized metal@metal-organic frameworks for topotecan detection.


Journal

Mikrochimica acta
ISSN: 1436-5073
Titre abrégé: Mikrochim Acta
Pays: Austria
ID NLM: 7808782

Informations de publication

Date de publication:
18 03 2023
Historique:
received: 13 12 2022
accepted: 28 02 2023
entrez: 18 3 2023
pubmed: 19 3 2023
medline: 22 3 2023
Statut: epublish

Résumé

The present study aims to develop an electroanalytical method to determine one of the most significant antineoplastic agents, topotecan (TPT), using a novel and selective molecular imprinted polymer (MIP) method for the first time. The MIP was synthesized using the electropolymerization method using TPT as a template molecule and pyrrole (Pyr) as the functional monomer on a metal-organic framework decorated with chitosan-stabilized gold nanoparticles (Au-CH@MOF-5). The materials' morphological and physical characteristics were characterized using various physical techniques. The analytical characteristics of the obtained sensors were examined by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). After all characterizations and optimizing the experimental conditions, MIP-Au-CH@MOF-5 and NIP-Au-CH@MOF-5 were evaluated on the glassy carbon electrode (GCE). MIP-Au-CH@MOF-5/GCE indicated a wide linear response of 0.4-70.0 nM and a low detection limit (LOD) of 0.298 nM. The developed sensor also showed excellent recovery in human plasma and nasal samples with recoveries of 94.41-106.16 % and 95.1-107.0 %, respectively, confirming its potential for future on-site monitoring of TPT in real samples. This methodology offers a different approach to electroanalytical procedures using MIP methods. Moreover, the high sensitivity and selectivity of the developed sensor were illustrated by the ability to recognize TPT over potentially interfering agents. Hence, it can be speculated that the fabricated MIP-Au-CH@MOF-5/GCE may be utilized in a multitude of areas, including public health and food quality.

Identifiants

pubmed: 36933052
doi: 10.1007/s00604-023-05722-1
pii: 10.1007/s00604-023-05722-1
doi:

Substances chimiques

Metal-Organic Frameworks 0
Molecularly Imprinted Polymers 0
Chitosan 9012-76-4
Topotecan 7M7YKX2N15
Gold 7440-57-5
Polymers 0
Carbon 7440-44-0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

142

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.

Références

Ormrod D, Spencer CM (1999) Topotecan. A review of its efficacy in small cell lung cancer. Drugs 58:533–551. https://doi.org/10.2165/00003495-199958030-00020/METRICS
doi: 10.2165/00003495-199958030-00020/METRICS pubmed: 10493279
Karimi-Maleh H, Shojaei AF, Tabatabaeian K et al (2016) Simultaneous determination of 6-mercaptopruine, 6-thioguanine and dasatinib as three important anticancer drugs using nanostructure voltammetric sensor employing Pt/MWCNTs and 1-butyl-3-methylimidazolium hexafluoro phosphate. Biosens Bioelectron 86:879–884. https://doi.org/10.1016/J.BIOS.2016.07.086
doi: 10.1016/J.BIOS.2016.07.086 pubmed: 27494812
Alavi-Tabari SAR, Khalilzadeh MA, Karimi-Maleh H (2018) Simultaneous determination of doxorubicin and dasatinib as two breast anticancer drugs uses an amplified sensor with ionic liquid and ZnO nanoparticle. J Electroanal Chem 811:84–88. https://doi.org/10.1016/J.JELECHEM.2018.01.034
doi: 10.1016/J.JELECHEM.2018.01.034
Karimi-Maleh H, Karimi F, Alizadeh M, Sanati AL (2020) Electrochemical sensors, a bright future in the fabrication of portable kits in analytical systems. Chem Rec 20:682–692. https://doi.org/10.1002/TCR.201900092
doi: 10.1002/TCR.201900092 pubmed: 31845511
Rosing H, Doyle E, Davies BE, Beijnen JH (1995) High-performance liquid chromatographic determination of the novel antitumour drug topotecan and topotecan as the total of the lactone plus carboxylate forms, in human plasma. J Chromatogr B Biomed Sci Appl 668:107–115. https://doi.org/10.1016/0378-4347(95)00054-M
doi: 10.1016/0378-4347(95)00054-M
Ye L, Shi J, Wan S et al (2013) Development and validation of a liquid chromatography–tandem mass spectrometry method for topotecan determination in beagle dog plasma and its application in a bioequivalence study. Biomed Chromatogr 27:1532–1539. https://doi.org/10.1002/BMC.2956
doi: 10.1002/BMC.2956 pubmed: 23788247
Mehmandoust M, Pourhakkak P, Hasannia F et al (2022) A reusable and sensitive electrochemical sensor for determination of Allura red in the presence of Tartrazine based on functionalized nanodiamond@SiO2@TiO2; an electrochemical and molecular docking investigation. Food Chem Toxicol 164:113080. https://doi.org/10.1016/J.FCT.2022.113080
doi: 10.1016/J.FCT.2022.113080 pubmed: 35490856
Tiris G, Khoshnavaz Y, Öven EN et al (2022) A sensitive voltammetric sensor for specific recognition of vitamin C in human plasma based on MAPbI3 perovskite nanorods: Original scientific paper. J Electrochem Sci Eng 12:175–183. https://doi.org/10.5599/JESE.1153
doi: 10.5599/JESE.1153
Mehmandoust M, Karimi F, Erk N (2022) A zinc oxide nanorods/molybdenum disulfide nanosheets hybrid as a sensitive and reusable electrochemical sensor for determination of anti-retroviral agent indinavir. Chemosphere 300:134430. https://doi.org/10.1016/J.CHEMOSPHERE.2022.134430
doi: 10.1016/J.CHEMOSPHERE.2022.134430 pubmed: 35358553
Altunay N, Elik A, Tuzen M et al (2023) Determination and extraction of acrylamide in processed food samples using alkanol-based supramolecular solvent-assisted dispersive liquid-liquid microextraction coupled with spectrophotometer: optimization using factorial design. J Food Compos Anal 115:105023. https://doi.org/10.1016/J.JFCA.2022.105023
doi: 10.1016/J.JFCA.2022.105023
Mohebbi A, Jouyban A, Farajzadeh MA et al (2022) Combination of mixed mode dispersive solid phase extraction with magnetic ionic liquids based dispersive liquid–liquid microextraction for the extraction of anticoagulant drugs from urine samples. Microchem J 183:108065. https://doi.org/10.1016/J.MICROC.2022.108065
doi: 10.1016/J.MICROC.2022.108065
MarziKhosrowshahi E, AfsharMogaddam MR, Javadzadeh Y et al (2022) Experimental and density functional theoretical modeling of triazole pesticides extraction by Ti2C nanosheets as a sorbent in dispersive solid phase extraction method before HPLC-MS/MS analysis. Microchem J 178:107331. https://doi.org/10.1016/J.MICROC.2022.107331
doi: 10.1016/J.MICROC.2022.107331
Congur G, Erdem A, Mese F (2015) Electrochemical investigation of the interaction between topotecan and DNA at disposable graphite electrodes. Bioelectrochemistry 102:21–28. https://doi.org/10.1016/J.BIOELECHEM.2014.11.003
doi: 10.1016/J.BIOELECHEM.2014.11.003 pubmed: 25461757
Alavi-Tabari SAR, Khalilzadeh MA, Karimi-Maleh H, Zareyee D (2018) An amplified platform nanostructure sensor for the analysis of epirubicin in the presence of topotecan as two important chemotherapy drugs for breast cancer therapy. New J Chem 42:3828–3832. https://doi.org/10.1039/C7NJ04430E
doi: 10.1039/C7NJ04430E
Ibrahim M, Ibrahim H, Almandil NB, Kawde AN (2018) A novel nanocomposite based on gold nanoparticles loaded on acetylene black for electrochemical sensing of the anticancer drug topotecan in the presence of high concentration of uric acid. J Electroanal Chem 824:22–31. https://doi.org/10.1016/J.JELECHEM.2018.07.031
doi: 10.1016/J.JELECHEM.2018.07.031
Mohammadian A, Ebrahimi M, Karimi-Maleh H (2018) Synergic effect of 2D nitrogen doped reduced graphene nano-sheet and ionic liquid as a new approach for fabrication of anticancer drug sensor in analysis of doxorubicin and topotecan. J Mol Liq 265:727–732. https://doi.org/10.1016/J.MOLLIQ.2018.07.026
doi: 10.1016/J.MOLLIQ.2018.07.026
Saxena S, Shrivastava R, Satsangee SP, Srivastava S (2014) TiO 2 /graphene/chitosan-nanocomposite-based electrochemical sensor for the sensing of anti-HIV drug topotecan. J Electrochem Soc 161:H934–H940. https://doi.org/10.1149/2.0891414JES/XML
doi: 10.1149/2.0891414JES/XML
Bavandpour R, Rajabi M, Asghari A (2022) Electrochemical determination of epirubicin in the presence of topotecan as essential anti-cancer compounds using paste electrode amplified with Pt/SWCNT nanocomposite and a deep eutectic solvent. Chemosphere 289:133060. https://doi.org/10.1016/J.CHEMOSPHERE.2021.133060
doi: 10.1016/J.CHEMOSPHERE.2021.133060 pubmed: 34838830
Erk N, Mehmandoust M, Soylak M (2022) Electrochemical sensing of favipiravir with an innovative water-dispersible molecularly imprinted polymer based on the bimetallic metal-organic framework: comparison of morphological effects. Biosensors 12:769. https://doi.org/10.3390/BIOS12090769/S1
doi: 10.3390/BIOS12090769/S1 pubmed: 36140154 pmcid: 9496828
Martín-Esteban A (2001) Molecularly imprinted polymers: new molecular recognition materials for selective solid-phase extraction of organic compounds. Anal Bioanal Chem 370:795–802. https://doi.org/10.1007/S002160100854/METRICS
doi: 10.1007/S002160100854/METRICS
Mehmandoust M, Erk N, Naser M, Soylak M (2023) Molecularly imprinted polymer film loaded on the metal–organic framework with improved performance using stabilized gold-doped graphite carbon nitride nanosheets for the single-step detection of Fenamiphos. Food Chem 404:134627. https://doi.org/10.1016/J.FOODCHEM.2022.134627
doi: 10.1016/J.FOODCHEM.2022.134627 pubmed: 36274331
Rahman S, Bozal-Palabiyik B, Unal DN et al (2022) Molecularly imprinted polymers (MIPs) combined with nanomaterials as electrochemical sensing applications for environmental pollutants. Trends Environ Anal Chem 36:e00176. https://doi.org/10.1016/J.TEAC.2022.E00176
doi: 10.1016/J.TEAC.2022.E00176
Wackerlig J, Schirhagl R (2016) Applications of molecularly imprinted polymer nanoparticles and their advances toward industrial use: a review. Anal Chem 88:250–261. https://doi.org/10.1021/ACS.ANALCHEM.5B03804/ASSET/IMAGES/LARGE/AC-2015-038045_0005.JPEG
doi: 10.1021/ACS.ANALCHEM.5B03804/ASSET/IMAGES/LARGE/AC-2015-038045_0005.JPEG pubmed: 26539750
Arabi M, Ostovan A, Li J et al (2021) Molecular imprinting: green perspectives and strategies. Adv Mater 33:2100543. https://doi.org/10.1002/ADMA.202100543
doi: 10.1002/ADMA.202100543
Zhang N, Zhang N, Xu Y et al (2019) Molecularly imprinted materials for selective biological recognition. Macromol Rapid Commun 40:1900096. https://doi.org/10.1002/MARC.201900096
doi: 10.1002/MARC.201900096
Hart BR, Rush DJ, Shea KJ (2000) Discrimination between enantiomers of structurally related molecules: separation of benzodiazepines by molecularly imprinted polymers. J Am Chem Soc 122:460–465. https://doi.org/10.1021/JA9926313/ASSET/IMAGES/LARGE/JA9926313H00002.JPEG
doi: 10.1021/JA9926313/ASSET/IMAGES/LARGE/JA9926313H00002.JPEG
Jin H, Guo H, Gao X, Gui R (2018) Selective and sensitive electrochemical sensing of gastrodin based on nickel foam modified with reduced graphene oxide/silver nanoparticles complex-encapsulated molecularly imprinted polymers. Sensors Actuators B Chem 277:14–21. https://doi.org/10.1016/J.SNB.2018.08.156
doi: 10.1016/J.SNB.2018.08.156
Ding S, Lyu Z, Niu X et al (2020) Integrating ionic liquids with molecular imprinting technology for biorecognition and biosensing: a review. Biosens Bioelectron 149:111830. https://doi.org/10.1016/J.BIOS.2019.111830
doi: 10.1016/J.BIOS.2019.111830 pubmed: 31710919
Yang B, Fu C, Li J, Xu G (2018) Frontiers in highly sensitive molecularly imprinted electrochemical sensors: challenges and strategies. TrAC Trends Anal Chem 105:52–67. https://doi.org/10.1016/J.TRAC.2018.04.011
doi: 10.1016/J.TRAC.2018.04.011
Abdelhamid HN, Sharmoukh W (2021) Intrinsic catalase-mimicking MOFzyme for sensitive detection of hydrogen peroxide and ferric ions. Microchem J 163:105873. https://doi.org/10.1016/J.MICROC.2020.105873
doi: 10.1016/J.MICROC.2020.105873
Abdelhamid HN, Georgouvelas D, Edlund U, Mathew AP (2022) CelloZIFPaper: cellulose-ZIF hybrid paper for heavy metal removal and electrochemical sensing. Chem Eng J 446:136614. https://doi.org/10.1016/J.CEJ.2022.136614
doi: 10.1016/J.CEJ.2022.136614
Zhao Y, Wang J, Bao Z et al (2018) Adsorption separation of acetylene and ethylene in a highly thermostable microporous metal-organic framework. Sep Purif Technol 195:238–243. https://doi.org/10.1016/J.SEPPUR.2017.11.044
doi: 10.1016/J.SEPPUR.2017.11.044
Schlichte K, Kratzke T, Kaskel S (2004) Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous Mesoporous Mater 73:81–88. https://doi.org/10.1016/J.MICROMESO.2003.12.027
doi: 10.1016/J.MICROMESO.2003.12.027
Wang L, Han Y, Feng X et al (2016) Metal–organic frameworks for energy storage: Batteries and supercapacitors. Coord Chem Rev 307:361–381. https://doi.org/10.1016/J.CCR.2015.09.002
doi: 10.1016/J.CCR.2015.09.002
Mehmandoust M, Erk EE, Soylak M et al (2022) Metal–organic framework based electrochemical immunosensor for label-free detection of glial fibrillary acidic protein as a biomarker. Ind Eng Chem Res. https://doi.org/10.1021/ACS.IECR.2C01445
doi: 10.1021/ACS.IECR.2C01445
Wang H, Chen W, Chen Q et al (2021) Metal-organic framework (MOF)-Au@Pt nanoflowers composite material for electrochemical sensing of H2O2 in living cells. J Electroanal Chem 897:115603. https://doi.org/10.1016/J.JELECHEM.2021.115603
doi: 10.1016/J.JELECHEM.2021.115603
Dong J, Zhang D, Li C et al (2022) A sensitive electrochemical sensor based on PtNPs@Cu-MOF signal probe and DNA walker signal amplification for Pb2+ detection. Bioelectrochemistry 146:108134. https://doi.org/10.1016/J.BIOELECHEM.2022.108134
doi: 10.1016/J.BIOELECHEM.2022.108134 pubmed: 35436640
Mahapatra I, Sun TY, Clark JRA et al (2015) Probabilistic modelling of prospective environmental concentrations of gold nanoparticles from medical applications as a basis for risk assessment. J Nanobiotechnology 13:1–14. https://doi.org/10.1186/S12951-015-0150-0/FIGURES/3
doi: 10.1186/S12951-015-0150-0/FIGURES/3
Wang X, Falk M, Ortiz R et al (2012) Mediatorless sugar/oxygen enzymatic fuel cells based on gold nanoparticle-modified electrodes. Biosens Bioelectron 31:219–225. https://doi.org/10.1016/J.BIOS.2011.10.020
doi: 10.1016/J.BIOS.2011.10.020 pubmed: 22104648
Notarianni M, Vernon K, Chou A et al (2014) Plasmonic effect of gold nanoparticles in organic solar cells. Sol Energy 106:23–37. https://doi.org/10.1016/J.SOLENER.2013.09.026
doi: 10.1016/J.SOLENER.2013.09.026
Xue ZH, Zhang SN, Lin YX et al (2019) Electrochemical reduction of N2 into NH3 by donor-acceptor couples of Ni and Au nanoparticles with a 67.8% faradaic efficiency. J Am Chem Soc 141:14976–14980. https://doi.org/10.1021/JACS.9B07963/ASSET/IMAGES/LARGE/JA9B07963_0004.JPEG
doi: 10.1021/JACS.9B07963/ASSET/IMAGES/LARGE/JA9B07963_0004.JPEG pubmed: 31523954
da Silva AB, Rufato KB, de Oliveira AC et al (2020) Composite materials based on chitosan/gold nanoparticles: from synthesis to biomedical applications. Int J Biol Macromol 161:977–998. https://doi.org/10.1016/J.IJBIOMAC.2020.06.113
doi: 10.1016/J.IJBIOMAC.2020.06.113 pubmed: 32553969
Huang H, Yang X (2004) Synthesis of chitosan-stabilized gold nanoparticles in the absence/presence of tripolyphosphate. Biomacromolecules 5:2340–2346. https://doi.org/10.1021/BM0497116/SUPPL_FILE/BM0497116SI20040514_034954.PDF
doi: 10.1021/BM0497116/SUPPL_FILE/BM0497116SI20040514_034954.PDF pubmed: 15530050
Komenek S, Luesakul U, Ekgasit S et al (2017) Nanogold-gallate chitosan-targeted pulmonary delivery for treatment of lung cancer. AAPS PharmSciTech 18:1104–1115. https://doi.org/10.1208/S12249-016-0644-6/FIGURES/8
doi: 10.1208/S12249-016-0644-6/FIGURES/8 pubmed: 27796908
Dhahri A, Serghei A, Farzi G et al (2016) Chitosan-dithiooxamide-grafted rGO sheets decorated with Au nanoparticles: synthesis, characterization and properties. Eur Polym J 78:153–162. https://doi.org/10.1016/J.EURPOLYMJ.2016.03.023
doi: 10.1016/J.EURPOLYMJ.2016.03.023
Huang L, Wang H, Chen J et al (2003) Synthesis, morphology control, and properties of porous metal–organic coordination polymers. Microporous Mesoporous Mater 58:105–114. https://doi.org/10.1016/S1387-1811(02)00609-1
doi: 10.1016/S1387-1811(02)00609-1
Kaye SS, Dailly A, Yaghi OM, Long JR (2007) Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). J Am Chem Soc 129:14176–14177. https://doi.org/10.1021/JA076877G/SUPPL_FILE/JA076877GSI20071011_065658.PDF
doi: 10.1021/JA076877G/SUPPL_FILE/JA076877GSI20071011_065658.PDF pubmed: 17967030
Nivetha R, Gothandapani K, Raghavan V et al (2021) Nano-MOF-5 (Zn) derived porous carbon as support electrocatalyst for hydrogen evolution reaction. ChemCatChem 13:4342–4349. https://doi.org/10.1002/CCTC.202100958
doi: 10.1002/CCTC.202100958
Saha D, Deng S, Yang Z (2009) Hydrogen adsorption on metal-organic framework (MOF-5) synthesized by DMF approach. J Porous Mater 16:141–149. https://doi.org/10.1007/S10934-007-9178-3/TABLES/4
doi: 10.1007/S10934-007-9178-3/TABLES/4
Tsukamoto Y, Mabuchi K, Barbara Panella B, Hirscher M (2005) Hydrogen physisorption in metal–organic porous crystals. Adv Mater 17:538–541. https://doi.org/10.1002/ADMA.200400946
Hafizovic J, Bjørgen M, Olsbye U et al (2007) The inconsistency in adsorption properties and powder XRD data of MOF-5 is rationalized by framework interpenetration and the presence of organic and inorganic species in the nanocavities. J Am Chem Soc 129:3612–3620. https://doi.org/10.1021/JA0675447/SUPPL_FILE/JA0675447SI20070105_040009.PDF
doi: 10.1021/JA0675447/SUPPL_FILE/JA0675447SI20070105_040009.PDF pubmed: 17341071
Esken D, Zhang X, Lebedev OI et al (2009) Pd@MOF-5: limitations of gas-phase infiltration and solution impregnation of [Zn4O(bdc)3 ] (MOF-5) with metal–organic palladium precursors for loading with Pd nanoparticles. J Mater Chem 19:1314–1319. https://doi.org/10.1039/B815977G
doi: 10.1039/B815977G
Askari H, Ghaedi M, Dashtian K, Azghandi MHA (2017) Rapid and high-capacity ultrasonic assisted adsorption of ternary toxic anionic dyes onto MOF-5-activated carbon: Artificial neural networks, partial least squares, desirability function and isotherm and kinetic study. Ultrason Sonochem 37:71–82. https://doi.org/10.1016/J.ULTSONCH.2016.10.029
doi: 10.1016/J.ULTSONCH.2016.10.029 pubmed: 28427684
Sun X, Li Y (2004) Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew Chemie Int Ed 43:597–601. https://doi.org/10.1002/ANIE.200352386
doi: 10.1002/ANIE.200352386
Srivastava M, Srivastava SK, Nirala NR, Prakash R (2014) A chitosan-based polyaniline–Au nanocomposite biosensor for determination of cholesterol. Anal Methods 6:817–824. https://doi.org/10.1039/C3AY41812J
doi: 10.1039/C3AY41812J
Mehmandoust M, Mehmandoust A, Erk N (2022) Construction of a simple and selective electrochemical sensor based on Nafion/TiO2 for the voltammetric determination of olopatadine: Original scientific paper. J Electrochem Sci Eng 12:91–103. https://doi.org/10.5599/JESE.1117
doi: 10.5599/JESE.1117
Nantasenamat C, Naenna T, Isarankura Na-Ayudhya C, Prachayasittikul V (2005) Quantitative prediction of imprinting factor of molecularly imprinted polymers by artificial neural network. J Comput Aided Mol Des 19:509–524. https://doi.org/10.1007/S10822-005-9004-4/METRICS
doi: 10.1007/S10822-005-9004-4/METRICS pubmed: 16244792
Mehdinia A, Aziz-Zanjani MO, Ahmadifar M, Jabbari A (2013) Design and synthesis of molecularly imprinted polypyrrole based on nanoreactor SBA-15 for recognition of ascorbic acid. Biosens Bioelectron 39:88–93. https://doi.org/10.1016/J.BIOS.2012.06.052
doi: 10.1016/J.BIOS.2012.06.052 pubmed: 22871516
Ayerdurai V, Cieplak M, Noworyta KR et al (2021) Electrochemical sensor for selective tyramine determination, amplified by a molecularly imprinted polymer film. Bioelectrochemistry 138:107695. https://doi.org/10.1016/J.BIOELECHEM.2020.107695
doi: 10.1016/J.BIOELECHEM.2020.107695 pubmed: 33296790
Er E, Erk N (2020) A novel electrochemical sensing platform based on mono-dispersed gold nanorods modified graphene for the sensitive determination of topotecan. Sensors Actuators B Chem 320:128320. https://doi.org/10.1016/J.SNB.2020.128320
doi: 10.1016/J.SNB.2020.128320
Beitollahi H, Dehghannoudeh G, Moghaddam HM, Forootanfar H (2017) A sensitive electrochemical DNA biosensor for anticancer drug topotecan based on graphene carbon paste electrode. J Electrochem Soc 164:H812–H817. https://doi.org/10.1149/2.0511712JES/XML
doi: 10.1149/2.0511712JES/XML
Mehmandoust M, Çakar S, Özacar M et al (2021) (2021) Electrochemical sensor for facile and highly selective determination of antineoplastic agent in real samples using glassy carbon electrode modified by 2D-MoS2 NFs/TiO2 NPs. Top Catal 1:1–13. https://doi.org/10.1007/S11244-021-01479-0
doi: 10.1007/S11244-021-01479-0
Cheng Q, Du Y, Wu K et al (2011) Electrochemical detection of anticancer drug topotecan using nano-acetylene black film. Colloids Surf B Biointerfaces 84:135–139. https://doi.org/10.1016/J.COLSURFB.2010.12.027
doi: 10.1016/J.COLSURFB.2010.12.027 pubmed: 21255983

Auteurs

Mohammad Mehmandoust (M)

Department of Life Sciences and Chemistry, Constructor University, 28719, Bremen, Germany. mmehmandoust@constructor.university.
Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara, Turkey. mmehmandoust@constructor.university.

Gizem Tiris (G)

Department of Analytical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, 34093, Istanbul, Turkey.

Pouran Pourhakkak (P)

Department of Chemistry, Payame Noor University (PNU), Tehran, Iran.

Nevin Erk (N)

Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara, Turkey. erk@pharmacy.ankara.edu.tr.

Mustafa Soylak (M)

Department of Chemistry, Faculty of Sciences, Erciyes University, 38039, Kayseri, Turkey.
Technology Research & Application Center (TAUM), Erciyes University, 38039, Kayseri, Turkey.
Turkish Academy of Sciences (TUBA), Cankaya, Ankara, Turkey.

Gulsah S Kanberoglu (GS)

Department of Chemistry, Faculty of Science, Van Yuzuncu Yil University, Van, Turkey.

Mehmet Zahmakiran (M)

Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH