Metagenomic sequencing reveals swine lung microbial communities and metagenome-assembled genomes associated with lung lesions-a pilot study.


Journal

International microbiology : the official journal of the Spanish Society for Microbiology
ISSN: 1618-1905
Titre abrégé: Int Microbiol
Pays: Switzerland
ID NLM: 9816585

Informations de publication

Date de publication:
Nov 2023
Historique:
received: 11 11 2022
accepted: 11 03 2023
revised: 28 02 2023
medline: 3 11 2023
pubmed: 19 3 2023
entrez: 18 3 2023
Statut: ppublish

Résumé

Low microbial biomass in the lungs, high host-DNA contamination and sampling difficulty limit the study on lung microbiome. Therefore, little is still known about lung microbial communities and their functions. Here, we perform a preliminary exploratory study to investigate the composition of swine lung microbial community using shotgun metagenomic sequencing and compare the microbial communities between healthy and severe-lesion lungs. We collected ten lavage-fluid samples from swine lungs (five from healthy lungs and five from severe-lesion lungs), and obtained their metagenomes by shotgun metagenomic sequencing. After filtering host genomic DNA contamination (93.5% ± 1.2%) in the lung metagenomic data, we annotated swine lung microbial communities ranging from four domains to 645 species. Compared with previous taxonomic annotation of the same samples by the 16S rRNA gene amplicon sequencing, it annotated the same number of family taxa but more genera and species. We next performed an association analysis between lung microbiome and host lung-lesion phenotype. We found three species (Mycoplasma hyopneumoniae, Ureaplasma diversum, and Mycoplasma hyorhinis) were associated with lung lesions, suggesting they might be the key species causing swine lung lesions. Furthermore, we successfully reconstructed the metagenome-assembled genomes (MAGs) of these three species using metagenomic binning. This pilot study showed us the feasibility and relevant limitations of shotgun metagenomic sequencing for the characterization of swine lung microbiome using lung lavage-fluid samples. The findings provided an enhanced understanding of the swine lung microbiome and its role in maintaining lung health and/or causing lung lesions.

Identifiants

pubmed: 36933182
doi: 10.1007/s10123-023-00345-1
pii: 10.1007/s10123-023-00345-1
doi:

Substances chimiques

RNA, Ribosomal, 16S 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

893-906

Subventions

Organisme : Guangdong Sail Plan Introduction of Innovative and Entrepreneurship Research Team Program
ID : 2016YT03H062
Organisme : National Swine Industry and Technology System of China
ID : nycytx-009

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.

Références

Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, Lahti L, Loman NJ, Andersson AF, Quince C (2014) Binning metagenomic contigs by coverage and composition. Nat Methods 11:1144–1146
pubmed: 25218180 doi: 10.1038/nmeth.3103
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
pubmed: 9254694 pmcid: 146917 doi: 10.1093/nar/25.17.3389
Baj J, Forma A, Sitarz M, Portincasa P, Garruti G, Krasowska D, Maciejewski R (2020) Helicobacter pylori virulence factors-mechanisms of bacterial pathogenicity in the gastric microenvironment. Cells 10:27
pubmed: 33375694 pmcid: 7824444 doi: 10.3390/cells10010027
Benjamin DJ, Berger JO, Johannesson M, Nosek BA, Wagenmakers EJ, Berk R, Bollen KA, Brembs B, Brown L, Camerer C et al (2018) Redefine statistical significance. Nat. Hum Behav 2:6–10
doi: 10.1038/s41562-017-0189-z
Burgher Y, Miranda L, Rodriguez-Roche R, de Almeida Campos AC, Lobo E, Neves T, Martinez O, Timenetsky J (2014) Ureaplasma diversum in pneumonic lungs of swine. Infect Genet Evol 21:486–488
pubmed: 23851111 doi: 10.1016/j.meegid.2013.07.003
Burucoa C, Axon A (2017) Epidemiology of Helicobacter pylori infection. Helicobacter 22(Suppl):1
Carr VR, Chaguza C (2021) Metagenomics for surveillance of respiratory pathogens. Nat Rev Microbiol 19:285
pubmed: 33707741 pmcid: 7950416 doi: 10.1038/s41579-021-00541-8
Charalampous T, Kay GL, Richardson H, Aydin A, Baldan R, Jeanes C, Rae D, Grundy S, Turner DJ, Wain J et al (2019) Nanopore metagenomics enables rapid clinical diagnosis of bacterial lower respiratory infection. Nat Biotechnol 37:783–792
pubmed: 31235920 doi: 10.1038/s41587-019-0156-5
Chen L, Zheng D, Liu B, Yang J, Jin Q (2016) VFDB 2016: hierarchical and refined dataset for big data analysis–10 years on. Nucleic Acids Res 44:D694-697
pubmed: 26578559 doi: 10.1093/nar/gkv1239
Cookson WOCM, Cox MJ, Moffatt MF (2017) New opportunities for managing acute and chronic lung infections. Nat Rev Microbiol 16:111
pubmed: 29062070 doi: 10.1038/nrmicro.2017.122
Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ (2018) Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6:226
pubmed: 30558668 pmcid: 6298009 doi: 10.1186/s40168-018-0605-2
Dickson RP, Erb-Downward JR, Freeman CM, McCloskey L, Beck JM, Huffnagle GB, Curtis JL (2015) Spatial variation in the healthy human lung microbiome and the adapted island model of lung biogeography. Ann Am Thorac Soc 12:821–830
pubmed: 25803243 pmcid: 4590020 doi: 10.1513/AnnalsATS.201501-029OC
Dixon P (2003) VEGAN, a package of R functions for community ecology. J VegSci 14:927–930
dos Santos SB, de Souza Neto OL, de Albuquerque PP, da Rocha Mota A, de Cassia Peixoto Kim P, de Moraes EP, do Nascimento ER, do Mota RA (2013) Detection of Ureaplasma spp. in semen samples from sheep in Brazil. Braz J Microbiol 44:911–914
pubmed: 24516459 doi: 10.1590/S1517-83822013000300040
Elahi S, Holmstrom J, Gerdts V (2007) The benefits of using diverse animal models for studying pertussis. Trends Microbiol 15:462–468
pubmed: 17920273 doi: 10.1016/j.tim.2007.09.003
Fresia P, Antelo V, Salazar C, Gimenez M, D’Alessandro B, Afshinnekoo E, Mason C, Gonnet GH, Iraola G (2019) Urban metagenomics uncover antibiotic resistance reservoirs in coastal beach and sewage waters. Microbiome 7:35
pubmed: 30819245 pmcid: 6396544 doi: 10.1186/s40168-019-0648-z
Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150–3152
pubmed: 23060610 pmcid: 3516142 doi: 10.1093/bioinformatics/bts565
Gaeti JG, Lana MV, Silva GS, Lerner L, de Campos CG, Haruni F, Colodel EM, Costa EF, Corbellini LG, Nakazato L et al (2014) Ureaplasma diversum as a cause of pustular vulvovaginitis in bovine females in Vale Guapore, Mato Grosso State, Brazil. Trop Anim Health Prod 46:1059–1063
pubmed: 24817480 doi: 10.1007/s11250-014-0614-5
Gancia P, Delogu A, Pomero G (2014) Ureaplasma and bronchopulmonary dysplasia. Early Hum Dev 90(Suppl 1):S39-41
pubmed: 24709455 doi: 10.1016/S0378-3782(14)70013-1
Gil O, Diaz I, Vilaplana C, Tapia G, Diaz J, Fort M, Caceres N, Pinto S, Cayla J, Corner L et al (2010) Granuloma encapsulation is a key factor for containing tuberculosis infection in minipigs. PLoS ONE 5:e10030
pubmed: 20386605 pmcid: 2850319 doi: 10.1371/journal.pone.0010030
Huang T, Zhang M, Tong X, Chen J, Yan G, Fang S, Guo Y, Yang B, Xiao S, Chen C et al (2019) Microbial communities in swine lungs and their association with lung lesions. Microb Biotechnol 12:289–304
pubmed: 30556308 doi: 10.1111/1751-7915.13353
Jiang N, Liu H, Wang P, Huang J, Han H, Wang Q (2019) Illumina MiSeq sequencing investigation of microbiota in bronchoalveolar lavage fluid and cecum of the swine infected with PRRSV. Curr Microbiol 76:222–230
pubmed: 30554323 doi: 10.1007/s00284-018-1613-y
Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30
pubmed: 10592173 pmcid: 102409 doi: 10.1093/nar/28.1.27
Kang DD, Froula J, Egan R, Wang Z (2015) MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3:e1165
pubmed: 26336640 pmcid: 4556158 doi: 10.7717/peerj.1165
Khatri M, Dwivedi V, Krakowka S, Manickam C, Ali A, Wang L, Qin Z, Renukaradhya GJ, Lee CW (2010) Swine influenza H1N1 virus induces acute inflammatory immune responses in pig lungs: a potential animal model for human H1N1 influenza virus. J Virol 84:11210–11218
pubmed: 20719941 pmcid: 2953174 doi: 10.1128/JVI.01211-10
Kostric M, Milger K, Krauss-Etschmann S, Engel M, Vestergaard G, Schloter M, Schöler A (2018) Development of a stable lung microbiome in healthy neonatal mice. Microb Ecol 75:529–542
pubmed: 28905200 doi: 10.1007/s00248-017-1068-x
Larsen JM, Musavian HS, Butt TM, Ingvorsen C, Thysen AH, Brix S (2015) Chronic obstructive pulmonary disease and asthma-associated Proteobacteria, but not commensal Prevotella spp., promote Toll-like receptor 2-independent lung inflammation and pathology. Immunology 144:333–342
pubmed: 25179236 pmcid: 4298427 doi: 10.1111/imm.12376
Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760
pubmed: 19451168 pmcid: 2705234 doi: 10.1093/bioinformatics/btp324
Li D, Liu CM, Luo R, Sadakane K, Lam TW (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31:1674–1676
pubmed: 25609793 doi: 10.1093/bioinformatics/btv033
Li Z, Wang X, Di D, Pan R, Gao Y, Xiao C, Li B, Wei J, Liu K, Qiu Y et al (2021) Comparative analysis of the pulmonary microbiome in healthy and diseased pigs. Mol Genet Genomics 296:21–31
pubmed: 32944788 doi: 10.1007/s00438-020-01722-5
Liu YX, Qin Y, Chen T, Lu M, Qian X, Guo X, Bai Y (2020) A practical guide to amplicon and metagenomic analysis of microbiome data. Protein Cell 12:315–330
pubmed: 32394199 pmcid: 8106563 doi: 10.1007/s13238-020-00724-8
Mare CJ, Switzer WP (1965) Mycoplasma hyopenumoniae, a causative agent of virus pig pneumonia. Vet Med 60:841–846
Marotz CA, Sanders JG, Zuniga C, Zaramela LS, Knight R, Zengler K (2018) Improving saliva shotgun metagenomics by chemical host DNA depletion. Microbiome 6:42
pubmed: 29482639 pmcid: 5827986 doi: 10.1186/s40168-018-0426-3
McMullen C, Alexander TW, Leguillette R, Workentine M, Timsit E (2020) Topography of the respiratory tract bacterial microbiota in cattle. Microbiome 8:91
pubmed: 32522285 pmcid: 7288481 doi: 10.1186/s40168-020-00869-y
Meurens F, Summerfield A, Nauwynck H, Saif L, Gerdts V (2012) The pig: a model for human infectious diseases. Trends Microbiol 20:50–57
pubmed: 22153753 doi: 10.1016/j.tim.2011.11.002
Noguchi H, Park J, Takagi T (2006) MetaGene: prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Res 34:5623–5630
pubmed: 17028096 pmcid: 1636498 doi: 10.1093/nar/gkl723
O’Dwyer DN, Dickson RP, Moore BB (2016) The lung microbiome, immunity, and the pathogenesis of chronic lung disease. J Immunol 196:4839–4847
pubmed: 27260767 doi: 10.4049/jimmunol.1600279
Opriessnig T, Gimenez-Lirola LG, Halbur PG (2011) Polymicrobial respiratory disease in pigs. Anim Health Res Rev 12:133–148
pubmed: 22152290 doi: 10.1017/S1466252311000120
Pabst R (2020) The pig as a model for immunology research. Cell Tissue Res 380:287–304
pubmed: 32356014 pmcid: 7223737 doi: 10.1007/s00441-020-03206-9
Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30:3123–3124
pubmed: 25061070 pmcid: 4609014 doi: 10.1093/bioinformatics/btu494
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055
pubmed: 25977477 pmcid: 4484387 doi: 10.1101/gr.186072.114
Quince C, Walker AW, Simpson JT, Loman NJ, Segata N (2017) Shotgun metagenomics, from sampling to analysis. Nat Biotechnol 35:833–844
pubmed: 28898207 doi: 10.1038/nbt.3935
Rajendhran J, Gunasekaran P (2011) Microbial phylogeny and diversity: small subunit ribosomal RNA sequence analysis and beyond. Microbiol Res 166:99–110
pubmed: 20223646 doi: 10.1016/j.micres.2010.02.003
Rodriguez RL, Gunturu S, Tiedje JM, Cole JR, Konstantinidis KT (2018) Nonpareil 3: fast estimation of metagenomic coverage and sequence diversity. mSystems 3:e00039–18
Rose DL, Tully JG, Wittler RGTaxonomy of some swine mycoplasmas: Mycoplasma suipneumoniae Goodwin, et al (1979) 1965, a later, objective synonym of Mycoplasma hyopneumoniae Mare and Switzer 1965, and the status of Mycoplasma flocculare Meyling and Friis 1972. Int J Syst Evolut Microbiol 29:83–91
Roumpeka DD, Wallace RJ, Escalettes F, Fotheringham I, Watson M (2017) A review of bioinformatics tools for bio-prospecting from metagenomic sequence data. Front Genet 8:23
pubmed: 28321234 pmcid: 5337752 doi: 10.3389/fgene.2017.00023
Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069
pubmed: 24642063 doi: 10.1093/bioinformatics/btu153
Shah N, Tang H, Doak TG, Ye Y (2011) Comparing bacterial communities inferred from 16S rRNA gene sequencing and shotgun metagenomics. Pac Symp Biocomput 16:165–176
Siqueira FM, Perez-Wohlfeil E, Carvalho FM, Trelles O, Schrank IS, Vasconcelos ATR, Zaha A (2017) Microbiome overview in swine lungs. PLoS One 12:e0181503
pubmed: 28719637 pmcid: 5515459 doi: 10.1371/journal.pone.0181503
Sulaiman I, Schuster S, Segal LN (2020) Perspectives in lung microbiome research. Curr Opin Microbiol 56:24–29
pubmed: 32623064 pmcid: 7744389 doi: 10.1016/j.mib.2020.06.001
Uritskiy GV, DiRuggiero J, Taylor J (2018) MetaWRAP-a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6:158
pubmed: 30219103 pmcid: 6138922 doi: 10.1186/s40168-018-0541-1
Wu YW, Simmons BA, Singer SW (2016) MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32:605–607
pubmed: 26515820 doi: 10.1093/bioinformatics/btv638
Wu BG, Kapoor B, Cummings KJ, Stanton ML, Nett RJ, Kreiss K, Abraham JL, Colby TV, Franko AD, Green FHY et al (2020) Evidence for environmental-human microbiota transfer at a manufacturing facility with novel work-related respiratory disease. Am J Respir Crit Care Med 202:1678–1688
pubmed: 32673495 pmcid: 7737585 doi: 10.1164/rccm.202001-0197OC
Yan Z, Chen B, Yang Y, Yi X, Wei M, Ecklu-Mensah G, Buschmann MM, Liu H, Gao J, Liang W et al (2022) Multi-omics analyses of airway host-microbe interactions in chronic obstructive pulmonary disease identify potential therapeutic interventions. Nat Microbiol 7:1361–1375
pubmed: 35995842 doi: 10.1038/s41564-022-01196-8
Yiwen C, Yueyue W, Lianmei Q, Cuiming Z, Xiaoxing Y (2021) Infection strategies of mycoplasmas: Unraveling the panoply of virulence factors. Virulence 12:788–817
pubmed: 33704021 pmcid: 7954426 doi: 10.1080/21505594.2021.1889813
Zhu B, Xiao D, Zhang H, Zhang Y, Gao Y, Xu L, Lv J, Wang Y, Zhang J, Shao Z (2013) MALDI-TOF MS distinctly differentiates nontypable Haemophilus influenzae from Haemophilus haemolyticus. PLoS One 8:e56139
pubmed: 23457514 pmcid: 3573053 doi: 10.1371/journal.pone.0056139
Zou G, Xiaobing Z, Xiangyang Q, Congzhou Z (2013) Health monitoring of pigs: establishment and application of a slaughterhouse disease assessment system. Swine Prod 1:94–96

Auteurs

Jingquan Li (J)

State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.

Tao Huang (T)

State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.

Mingpeng Zhang (M)

State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.

Xinkai Tong (X)

State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.

Jiaqi Chen (J)

State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.

Zhou Zhang (Z)

State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.

Fei Huang (F)

State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.

Huashui Ai (H)

State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China. aihsh@hotmail.com.

Lusheng Huang (L)

State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.

Articles similaires

Animals Tail Swine Behavior, Animal Animal Husbandry
Populus Soil Microbiology Soil Microbiota Fungi
Animals Swine Antiviral Agents Swine Diseases Coronavirus Infections
Humans Hyaluronic Acid Osteoarthritis, Hip Female Middle Aged

Classifications MeSH