Comprehensive molecular characterization of complete mitogenome assemblies of 33 Eimeria isolates infecting domestic chickens.
Chicken coccidia
Genetic markers
Mitogenome
Phylomitogenomics
Population genetics
Journal
Parasites & vectors
ISSN: 1756-3305
Titre abrégé: Parasit Vectors
Pays: England
ID NLM: 101462774
Informations de publication
Date de publication:
19 Mar 2023
19 Mar 2023
Historique:
received:
29
12
2022
accepted:
22
02
2023
entrez:
20
3
2023
pubmed:
21
3
2023
medline:
22
3
2023
Statut:
epublish
Résumé
Coccidiosis caused by Eimeria is one of the most severe chicken diseases and poses a great economic threat to the poultry industry. Understanding the evolutionary biology of chicken Eimeria parasites underpins development of new interactions toward the improved prevention and control of this poultry disease. We presented an evolutionary blueprint of chicken coccidia by genetically characterizing complete mitogenome assemblies of 33 isolates representing all seven known Eimeria species infecting chickens in China. Further genome- and gene-level phylogenies were also achieved to better understand the evolutionary relationships of these chicken Eimeria at the species level. 33 mitogenomes of chicken eimerian parasites ranged from 6148 bp to 6480 bp in size and encoded typical mitochondrial compositions of apicomplexan parasites including three protein-coding genes (PCGs), seven fragmented small subunit (SSU) and 12/13 fragmented large subunit (LSU) rRNAs. Comparative genomics provided an evolutionary scenario for the genetic diversity of PCGs-cytochrome c oxidase subunits 1 and 3 (cox1 and cox3) and cytochrome b (cytb); all were under purifying selection with cox1 and cox3 being the lowest and highest evolutionary rates, respectively. Genome-wide phylogenies classified the 33 Eimeria isolates into seven subgroups, and furthermore Eimeria tenella and Eimeria necatrix were determined to be more closely related to each other than to the other eight congenic species. Single/concatenated mitochondrial protein gene-based phylogenies supported cox1 as the genetic marker for evolutionary and phylogenetic studies for avain coccidia. To our knowledge, these are the first population-level mitogenomic data on the genus Eimeria, and its comprehensive molecular characterization provides valuable resources for systematic, population genetic and evolutionary biological studies of apicomplexan parasites in poultry.
Sections du résumé
BACKGROUND
BACKGROUND
Coccidiosis caused by Eimeria is one of the most severe chicken diseases and poses a great economic threat to the poultry industry. Understanding the evolutionary biology of chicken Eimeria parasites underpins development of new interactions toward the improved prevention and control of this poultry disease.
METHODS
METHODS
We presented an evolutionary blueprint of chicken coccidia by genetically characterizing complete mitogenome assemblies of 33 isolates representing all seven known Eimeria species infecting chickens in China. Further genome- and gene-level phylogenies were also achieved to better understand the evolutionary relationships of these chicken Eimeria at the species level.
RESULTS
RESULTS
33 mitogenomes of chicken eimerian parasites ranged from 6148 bp to 6480 bp in size and encoded typical mitochondrial compositions of apicomplexan parasites including three protein-coding genes (PCGs), seven fragmented small subunit (SSU) and 12/13 fragmented large subunit (LSU) rRNAs. Comparative genomics provided an evolutionary scenario for the genetic diversity of PCGs-cytochrome c oxidase subunits 1 and 3 (cox1 and cox3) and cytochrome b (cytb); all were under purifying selection with cox1 and cox3 being the lowest and highest evolutionary rates, respectively. Genome-wide phylogenies classified the 33 Eimeria isolates into seven subgroups, and furthermore Eimeria tenella and Eimeria necatrix were determined to be more closely related to each other than to the other eight congenic species. Single/concatenated mitochondrial protein gene-based phylogenies supported cox1 as the genetic marker for evolutionary and phylogenetic studies for avain coccidia.
CONCLUSIONS
CONCLUSIONS
To our knowledge, these are the first population-level mitogenomic data on the genus Eimeria, and its comprehensive molecular characterization provides valuable resources for systematic, population genetic and evolutionary biological studies of apicomplexan parasites in poultry.
Identifiants
pubmed: 36935516
doi: 10.1186/s13071-023-05712-5
pii: 10.1186/s13071-023-05712-5
pmc: PMC10026407
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
109Subventions
Organisme : National Natural Science Foundation of China
ID : 32273028
Informations de copyright
© 2023. The Author(s).
Références
Mol Biol Evol. 2017 Dec 1;34(12):3299-3302
pubmed: 29029172
Trop Anim Health Prod. 2012 Mar;44(3):589-94
pubmed: 21814751
Methods Mol Biol. 2000;132:71-91
pubmed: 10547832
Mol Phylogenet Evol. 2004 Mar;30(3):686-702
pubmed: 15012948
Syst Biol. 2003 Oct;52(5):696-704
pubmed: 14530136
Front Vet Sci. 2020 Feb 26;7:101
pubmed: 32175341
Vet Parasitol. 2015 Mar 15;208(3-4):118-24
pubmed: 25660426
J Parasitol. 2010 Oct;96(5):982-6
pubmed: 20950106
Cladistics. 2012 Apr;28(2):190-194
pubmed: 34861755
J Parasit Dis. 2018 Dec;42(4):483-493
pubmed: 30538344
Nature. 2003 Oct 23;425(6960):798-804
pubmed: 14574403
Mol Biol Evol. 2000 Apr;17(4):540-52
pubmed: 10742046
Vet Med Sci. 2022 Jul;8(4):1563-1569
pubmed: 35384356
Mol Biol Evol. 2018 Jun 1;35(6):1547-1549
pubmed: 29722887
Gene. 2011 Jul 1;480(1-2):28-33
pubmed: 21402132
Front Vet Sci. 2018 Jul 30;5:176
pubmed: 30105228
Life (Basel). 2022 Oct 17;12(10):
pubmed: 36295056
Avian Dis. 2019 Dec;63(4):577-583
pubmed: 31865671
Nucleic Acids Res. 2002 Jul 15;30(14):3059-66
pubmed: 12136088
PLoS One. 2013 Dec 31;8(12):e84254
pubmed: 24391923
Trends Genet. 2002 Sep;18(9):486
pubmed: 12175810
J Mol Evol. 1995 Sep;41(3):353-8
pubmed: 7563121
Adv Parasitol. 2013;83:93-171
pubmed: 23876872
Mol Phylogenet Evol. 2013 Nov;69(2):313-9
pubmed: 22982435
J Parasit Dis. 2015 Mar;39(1):22-6
pubmed: 25698854
Parasitol Res. 2022 Jul;121(7):2051-2063
pubmed: 35499632
Mitochondrial DNA. 2008 Dec;19(6):471-8
pubmed: 19489133
Parasitol Res. 2013 Dec;112(12):4129-36
pubmed: 24013344
Vet Parasitol. 2021 Aug;296:109443
pubmed: 34147767
Cladistics. 2022 Feb;38(1):126-146
pubmed: 35049082
Mitochondrial DNA A DNA Mapp Seq Anal. 2016 Jul;27(4):2805-6
pubmed: 26099978
Mol Ecol Resour. 2020 Jan;20(1):348-355
pubmed: 31599058
Int J Parasitol. 2011 Jul;41(8):843-50
pubmed: 21515277
J Microbiol Methods. 2016 May;124:1-9
pubmed: 26944624
Onderstepoort J Vet Res. 2018 Sep 18;85(1):e1-e6
pubmed: 30326718
Avian Dis. 2021 Sep;65(3):469-473
pubmed: 34699145
Mitochondrial DNA. 2012 Oct;23(5):341-3
pubmed: 22632170
J Parasit Dis. 2017 Dec;41(4):1014-1019
pubmed: 29114135
J Parasitol. 1997 Apr;83(2):262-71
pubmed: 9105308
Vet Res. 2020 Sep 14;51(1):115
pubmed: 32928271
Genomics Proteomics Bioinformatics. 2006 Nov;4(4):259-63
pubmed: 17531802
Int J Parasitol. 2021 Jul;51(8):621-634
pubmed: 33713650
Bioinformatics. 2012 Jun 15;28(12):1647-9
pubmed: 22543367
Parasitol Res. 2015 May;114(5):1761-8
pubmed: 25678350
Avian Pathol. 2008 Apr;37(2):161-70
pubmed: 18393094
Syst Biol. 2012 May;61(3):539-42
pubmed: 22357727
New Phytol. 2005 Oct;168(1):39-50
pubmed: 16159319
Mol Biol Evol. 2010 May;27(5):1107-16
pubmed: 20034997
Parasitol Res. 2019 Apr;118(4):1299-1306
pubmed: 30778751
Vet Parasitol. 2008 Apr 15;152(3-4):226-34
pubmed: 18243560
Parasitol Res. 2021 Feb;120(2):655-663
pubmed: 33409626
Int J Parasitol. 2016 Aug;46(9):537-44
pubmed: 27368611
Nucleic Acids Res. 2013 Jul;41(13):e129
pubmed: 23661685
J Parasitol. 2009 Aug;95(4):871-80
pubmed: 20049993
Nat Methods. 2017 Jun;14(6):587-589
pubmed: 28481363
Vet Parasitol. 2017 Aug 30;243:58-66
pubmed: 28807311
Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21576-81
pubmed: 21115831
Parasite. 2013;20:50
pubmed: 24309007