Phosphatidylinositol 3-kinase signaling pathway and inflammatory bowel disease: Current status and future prospects.
Crohn's disease
PI3K
inflammatory bowel disease
ulcerative colitis
Journal
Fundamental & clinical pharmacology
ISSN: 1472-8206
Titre abrégé: Fundam Clin Pharmacol
Pays: England
ID NLM: 8710411
Informations de publication
Date de publication:
Oct 2023
Oct 2023
Historique:
revised:
01
03
2023
received:
24
12
2022
accepted:
17
03
2023
medline:
11
9
2023
pubmed:
21
3
2023
entrez:
20
3
2023
Statut:
ppublish
Résumé
Inflammatory bowel disease (IBD) is a chronic life-limiting disease of gastrointestinal tract characterized by widespread enteric inflammation. IBD is a multifactorial disease, and different environmental, microbial, and immune-related factors give rise to the development of disease. Among several factors, the preponderance of pro-inflammatory T helper 17 cells over the anti-inflammatory regulatory T cells augments inflammation in the intestinal mucosa. Prevailing evidence accentuates that PI3K signaling pathway plays a central role in the pathophysiology of the condition by regulating the inflammatory process in the gut mucosa. By recognizing the implications of PI3K in the pathogenesis of IBD, agents that could modulate this pathway have recently been at the focus of research, yielding encouraging results mainly in the experimental IBD models. In this review, we have summarized the recent advances, which may hold the keys to identify novel therapeutic strategies for IBD.
Substances chimiques
Phosphatidylinositol 3-Kinases
EC 2.7.1.-
Immunologic Factors
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
910-917Informations de copyright
© 2023 Société Française de Pharmacologie et de Thérapeutique. Published by John Wiley & Sons Ltd.
Références
Freeman K, Ryan R, Parsons N, Taylor-Phillips S, Willis BH, Clarke A. The incidence and prevalence of inflammatory bowel disease in UK primary care: a retrospective cohort study of the IQVIA medical research database. BMC Gastroenterol. 2021;21(1):139. doi:10.1186/s12876-021-01716-6
Sandborn WJ, Hanauer S, Van Assche G, et al. Treating beyond symptoms with a view to improving patient outcomes in inflammatory bowel diseases. J Crohn's Colitis. 2014;8(9):927-935. doi:10.1016/j.crohns.2014.02.021
Ng SC, Shi HY, Hamidi N, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet. 2017;390(10114):2769-2778. doi:10.1016/S0140-6736(17)32448-0
Waugh N, Cummins E, Royle P, et al. Faecal calprotectin testing for differentiating amongst inflammatory and non-inflammatory bowel diseases: systematic review and economic evaluation. Health Technol Assess (Winch Eng). 2013;17(1):xv-xix.
Hawkins P, Stephens L. PI3K signalling in inflammation. Biochim Biophys Acta (BBA)-Mole Cell Biol Lipids. 2015;1851:882-897.
Kim JS, Jeong JS, Kwon SH, Kim SR, Lee YC. Roles of PI3K pan-inhibitors and PI3K-δ inhibitors in allergic lung inflammation: a systematic review and meta-analysis. Sci Rep. 2020;10(1):7608. doi:10.1038/s41598-020-64594-0
Hazel K, O'Connor A. Emerging treatments for inflammatory bowel disease. Ther Adv Chronic Dis. 2020;11:2040622319899297. doi:10.1177/2040622319899297
Zhang Y-Z, Li Y-Y. Inflammatory bowel disease: pathogenesis. World J Gastroenterol: WJG. 2014;20(1):91-99. doi:10.3748/wjg.v20.i1.91
Graham DB, Xavier RJ. Pathway paradigms revealed from the genetics of inflammatory bowel disease. Nature. 2020;578(7796):527-539. doi:10.1038/s41586-020-2025-2
Santana PT, Rosas SLB, Ribeiro BE, Marinho Y, de Souza HS. Dysbiosis in inflammatory bowel disease: pathogenic role and potential therapeutic targets. Int J Mol Sci. 2022;23(7):3464. doi:10.3390/ijms23073464
Neurath MF. Cytokines in inflammatory bowel disease. Nat Rev Immunol. 2014;14(5):329-342. doi:10.1038/nri3661
Guan Q, Zhang J. Recent advances: the imbalance of cytokines in the pathogenesis of inflammatory bowel disease. Mediators Inflamm. 2017;2017:4810258. doi:10.1155/2017/4810258
Lee J, Lozano-Ruiz B, Yang FM, Fan DD, Shen L, González-Navajas JM. The multifaceted role of Th1, Th9, and Th17 cells in immune checkpoint inhibition therapy. Front Immunol. 2021;12:625667. doi:10.3389/fimmu.2021.625667
Gálvez J. Role of Th17 cells in the pathogenesis of human IBD. Int Schol Res Notices. 2014;2014:1-14. doi:10.1155/2014/928461
Alibakhshi A, Ranjbari J, Pilehvar-Soltanahmadi Y, Nasiri M, Mollazade M, Zarghami N. An update on phytochemicals in molecular target therapy of cancer: potential inhibitory effect on telomerase activity. Curr Med Chem. 2016;23(22):2380-2393. doi:10.2174/0929867323666160425113705
Jean S, Kiger AA. Classes of phosphoinositide 3-kinases at a glance. J Cell Sci. 2014;127(5):923-928. doi:10.1242/jcs.093773
Cianciulli A, Calvello R, Porro C, Trotta T, Salvatore R, Panaro MA. PI3k/Akt signalling pathway plays a crucial role in the anti-inflammatory effects of curcumin in LPS-activated microglia. Int Immunopharmacol. 2016;36:282-290. doi:10.1016/j.intimp.2016.05.007
Whelan SA, Dias WB, Thiruneelakantapillai L, Lane MD, Hart GW. Regulation of insulin receptor substrate 1 (IRS-1)/AKT kinase-mediated insulin signaling by O-linked β-N-acetylglucosamine in 3T3-L1 adipocytes. J Biol Chem. 2010;285(8):5204-5211. doi:10.1074/jbc.M109.077818
Asati V, Mahapatra DK, Bharti SK. PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: structural and pharmacological perspectives. Eur J Med Chem. 2016;109:314-341. doi:10.1016/j.ejmech.2016.01.012
Lu P-D, Zhao Y-H. Targeting NF-κB pathway for treating ulcerative colitis: comprehensive regulatory characteristics of Chinese medicines. Chin Med. 2020;15:1-25.
Ahmad A, Biersack B, Li Y, et al. Targeted regulation of PI3K/Akt/mTOR/NF-κB signaling by indole compounds and their derivatives: mechanistic details and biological implications for cancer therapy. Anti-Cancer Agents Med Chem (Formerly Current Medicinal Chemistry-Anti-Cancer Agents). 2013;13:1002-1013.
Yi-Bin W, Xiang L, Bing Y, et al. Inhibition of the CEBPβ-NFκB interaction by nanocarrier-packaged Carnosic acid ameliorates glia-mediated neuroinflammation and improves cognitive function in an Alzheimer's disease model. Cell Death Dis. 2022;13(4):318. doi:10.1038/s41419-022-04765-1
Kontaki E, Boumpas DT, Tzardi M, Mouzas IA, Papadakis KA, Verginis P. Aberrant function of myeloid-derived suppressor cells (MDSCs) in experimental colitis and in inflammatory bowel disease (IBD) immune responses. Autoimmunity. 2017;50(3):170-181. doi:10.1080/08916934.2017.1283405
Collins CB, Puthoor PR, Nguyen TT, et al. C/EBPβ deletion promotes expansion of poorly functional intestinal regulatory T cells. J Crohn's Colitis. 2018;12(12):1475-1485. doi:10.1093/ecco-jcc/jjy105
Mudter J, Neurath MF. Il-6 signaling in inflammatory bowel disease: pathophysiological role and clinical relevance. Inflamm Bowel Dis. 2007;13(8):1016-1023. doi:10.1002/ibd.20148
Xu J, Lin H, Wu G, Zhu M, Key HP, Li M. IL-6/STAT3 is a promising therapeutic target for hepatocellular carcinoma. Frontiers. Oncology. 2021;11:5366. doi:10.3389/fonc.2021.760971
Vogt PK, Hart JR. PI3K and STAT3: a new alliance. Cancer Discov. 2011;1(6):481-486. doi:10.1158/2159-8290.CD-11-0218
Montazeri M, Pilehvar-Soltanahmadi Y, Mohaghegh M, et al. Antiproliferative and apoptotic effect of dendrosomal curcumin nanoformulation in P53 mutant and wide-type cancer cell lines. Anti-Cancer Agents Med Chem (Formerly Current Medicinal Chemistry-Anti-Cancer Agents). 2017;17:662-673.
Bai Y, Li H, Lv R. Interleukin-17 activates JAK2/STAT3, PI3K/Akt and nuclear factor-κB signaling pathway to promote the tumorigenesis of cervical cancer. Exp Ther Med. 2021;22(5):1291. doi:10.3892/etm.2021.10726
Chen Y, Kijlstra A, Chen Y, Yang P. IL-17A stimulates the production of inflammatory mediators via Erk1/2, p38 MAPK, PI3K/Akt, and NF-κB pathways in ARPE-19 cells. Mol vis. 2011;17:3072-3077.
Huang XL, Xu J, Zhang XH, et al. PI3K/Akt signaling pathway is involved in the pathogenesis of ulcerative colitis. Inflamm Res. 2011;60(8):727-734. doi:10.1007/s00011-011-0325-6
Xie Y, Zhao Y, Shi L, et al. Gut epithelial TSC1/mTOR controls RIPK3-dependent necroptosis in intestinal inflammation and cancer. J Clin Invest. 2020;130(4):2111-2128. doi:10.1172/JCI133264
Semba RD, Ferrucci L, Bartali B, et al. Resveratrol levels and all-cause mortality in older community-dwelling adults. JAMA Intern Med. 2014;174(7):1077-1084. doi:10.1001/jamainternmed.2014.1582
Zhu F, Zheng J, Xu F, Xi Y, Chen J, Xu X. Resveratrol alleviates dextran sulfate sodium-induced acute ulcerative colitis in mice by mediating PI3K/Akt/VEGFA pathway. Front Pharmacol. 2021;12:1759. doi:10.3389/fphar.2021.693982
Zaghloul MS, Elshal M, Abdelmageed ME. Preventive empagliflozin activity on acute acetic acid-induced ulcerative colitis in rats via modulation of SIRT-1/PI3K/AKT pathway and improving colon barrier. Environ Toxicol Pharmacol. 2022;91:103833. doi:10.1016/j.etap.2022.103833
de Jong RJ, Ohnmacht C. Defining dysbiosis in inflammatory bowel disease. Immunity. 2019;50(1):8-10. doi:10.1016/j.immuni.2018.12.028
Eastaff-Leung N, Mabarrack N, Barbour A, Cummins A, Barry S. Foxp3+ regulatory T cells, Th17 effector cells, and cytokine environment in inflammatory bowel disease. J Clin Immunol. 2010;30(1):80-89. doi:10.1007/s10875-009-9345-1
Zhang Q, Wang S, Ji S. Trifolirhizin regulates the balance of Th17/Treg cells and inflammation in the ulcerative colitis mice through inhibiting the TXNIP-mediated activation of NLRP3 inflammasome. Clin Exp Pharmacol Physiol. 2022;49(8):787-796. doi:10.1111/1440-1681.13654
Zhang K, Liu W, Qu Z, et al. In vitro and in vivo human gastric cancer inhibition by Trifolirhizin is facilitated via autophagy, mitochondrial mediated programmed cell death, G2/M phase cell cycle arrest and inhibition of m-TOR/PI3K/AKT signalling pathway. J BUON. 2019;24(3):1100-1105.
Wang R, Guo L, Suo M, et al. Role of the nitrergic pathway in motor effects of oxytocin in rat proximal colon. Neurogastroenterol Motil. 2016;28(12):1815-1823. doi:10.1111/nmo.12883
Chen D, Zhao J, Wang H, et al. Oxytocin evokes a pulsatile PGE2 release from ileum mucosa and is required for repair of intestinal epithelium after injury. Sci Rep. 2015;5(1):11731. doi:10.1038/srep11731
Dou D, Liang J, Zhai X, et al. Oxytocin signalling in dendritic cells regulates immune tolerance in the intestine and alleviates DSS-induced colitis. Clin Sci. 2021;135(4):597-611. doi:10.1042/CS20201438
Li Q, Cheng H, Liu Y, Wang X, He F, Tang L. Activation of mTORC1 by LSECtin in macrophages directs intestinal repair in inflammatory bowel disease. Cell Death Dis. 2020;11(10):918. doi:10.1038/s41419-020-03114-4
Zhao Q, Duck LW, Huang F, et al. CD4+ T cell activation and concomitant mTOR metabolic inhibition can ablate microbiota-specific memory cells and prevent colitis. Sci Immunol. 2020;5(54):eabc6373. doi:10.1126/sciimmunol.abc6373
Kagal UA, Angadi NB, Matule SM. Effect of dipeptidyl peptidase 4 inhibitors on acute and subacute models of inflammation in male Wistar rats: an experimental study. Int J Appl Basic Med Res. 2017;7(1):26-31. doi:10.4103/2229-516X.198516
El-Marasy SA, Abdel-Rahman RF, Abd-Elsalam RM. Neuroprotective effect of vildagliptin against cerebral ischemia in rats. Naunyn Schmiedebergs Arch Pharmacol. 2018;391(10):1133-1145. doi:10.1007/s00210-018-1537-x
Fouad MR, Salama RM, Zaki HF, El-Sahar AE. Vildagliptin attenuates acetic acid-induced colitis in rats via targeting PI3K/Akt/NFκB, Nrf2 and CREB signaling pathways and the expression of lncRNA IFNG-AS1 and miR-146a. Int Immunopharmacol. 2021;92:107354. doi:10.1016/j.intimp.2020.107354
Wang J, Dong L, Wang M, Guo J, Zhao Y. MiR-146a regulates the development of ulcerative colitis via mediating the TLR4/MyD88/NF-κB signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23(5):2151-2157. doi:10.26355/eurrev_201903_17260
Padua D, Mahurkar-Joshi S, Law IKM, et al. A long noncoding RNA signature for ulcerative colitis identifies IFNG-AS1 as an enhancer of inflammation. American journal of physiology-gastrointestinal and liver. Phys Ther. 2016;311(3):G446-G457. doi:10.1152/ajpgi.00212.2016
Jiang W, Han Y, Hu M, Bao X, Yan Y, Chen G. A study on regulatory mechanism of miR-223 in ulcerative colitis through PI3K/Akt-mTOR signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23(11):4865-4872. doi:10.26355/eurrev_201906_18074
Principi M, Mastrolonardo M, Scicchitano P, et al. Endothelial function and cardiovascular risk in active inflammatory bowel diseases. J Crohn's Colitis. 2013;7(10):e427-e433. doi:10.1016/j.crohns.2013.02.001
Xie X, Liu P, Wu H, et al. miR-21 antagonist alleviates colitis and angiogenesis via the PTEN/PI3K/AKT pathway in colitis mice induced by TNBS. Ann Translat Med. 2022;10(7):10. doi:10.21037/atm-22-944
Xie X, Qu P, Wu H, et al. Circulating exosomal miR-21 mediates HUVEC proliferation and migration through PTEN/PI3K/AKT in Crohn's disease. Ann Translat Med. 2022;10(5):10. doi:10.21037/atm-22-475
Wang X-J, Li X-Y, Guo X-C, et al. LncRNA-miRNA-mRNA network analysis reveals the potential biomarkers in Crohn's disease rats treated with herb-partitioned Moxibustion. J Inflamm Res. 2022;15:1699-1716. doi:10.2147/JIR.S351672
Liao Y, Xu J, Qin B, et al. Advanced oxidation protein products impair autophagic flux in macrophage by inducing lysosomal dysfunction via activation of PI3K-Akt-mTOR pathway in Crohn's disease. Free Radic Biol Med. 2021;172:33-47. doi:10.1016/j.freeradbiomed.2021.05.018
Cevallos SA, Lee J-Y, Velazquez EM, et al. 5-Aminosalicylic acid ameliorates colitis and checks dysbiotic Escherichia coli expansion by activating PPAR-γ signaling in the intestinal epithelium. MBio. 2021;12:e03227-20.
Cai Z, Wang S, Li J. Treatment of inflammatory bowel disease: a comprehensive review. Front Med. 2021;8:765474. doi:10.3389/fmed.2021.765474