Improvement of photocatalytic degradation of methyl orange by impregnation of natural clay with nickel: optimization using the Box-Behnken design (BBD).
Methyl orange treatment
Ni/natural clay
Photocatalytic degradation
Response surface methodology
Journal
Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769
Informations de publication
Date de publication:
May 2023
May 2023
Historique:
received:
18
10
2022
accepted:
08
03
2023
medline:
10
5
2023
pubmed:
22
3
2023
entrez:
21
3
2023
Statut:
ppublish
Résumé
In this research work, the photocatalytic degradation of methyl orange dye was studied on nickel oxide supported on a natural Moroccan clay (Ni/NC). These catalysts have been prepared by dry impregnation of a nickel nitrate solution with different weight percentages (5, 10, 20% NiO). Experimental responses were obtained by a Box-Behnken (BBD) experimental design by varying the catalyst mass, solution pH, and initial dye concentration at three levels (low, medium, and high). The prepared catalysts were characterized using powder X-ray diffraction (XRD) to assess crystallinity and structure, Fourier transform infrared spectroscopy (FTIR) to detect different functional groups, scanning electron microscopy (SEM) combined with energy dispersive X-ray (EDX) analysis to study the surface morphology, and the optical characteristics of the catalysts were studied using absorption and diffuse reflectance measurements in the UV-visible range. The photocatalytic activity of the catalysts was evaluated in aqueous solutions under UV irradiation. ANOVA (analysis of variance) test is employed to recognize the significant factors and their interactions and then give the model equation for the percent dye degradation. The optimal values of the studied factors were determined by numerical optimization, and the results showed that about 100% degradation of the methyl orange dye could be achieved under the following optimal conditions, which are pH = 4.38, catalyst concentration of 0.99 g/L, and initial dye concentration of 30.42 mg/L.
Identifiants
pubmed: 36943563
doi: 10.1007/s11356-023-26417-3
pii: 10.1007/s11356-023-26417-3
doi:
Substances chimiques
Nickel
7OV03QG267
methyl orange
6B4TC34456
Clay
T1FAD4SS2M
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
62494-62507Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Ahadi A, Alamgholiloo H, Rostamnia H, Liu X, Shokouhimehr M, Alonso DA, Luque R (2019) Layer-wise titania growth within dimeric organic functional group viologen periodic mesoporous organosilica as efficient photocatalyst for oxidative formic acid decomposition. ChemCatChem J 11:4803–4809. https://doi.org/10.1002/cctc.201900486
doi: 10.1002/cctc.201900486
Ahmad AL, Puasa SW (2007) Reactive dyes decolourization from an aqueous solution by combined coagulation/micellar-enhanced ultrafiltration process. Chem Eng J 132:257–265. https://doi.org/10.1016/j.cej.2007.01.005
doi: 10.1016/j.cej.2007.01.005
Alamgholiloo H, Pesyan NN, Mohammadi R, Rostamnia S, Shokouhimehr M (2021) Synergistic advanced oxidation process for the fast degradation of ciprofloxacin antibiotics using a GO/CuMOF-magnetic ternary nanocomposite. J Environ Chem Eng 9:105486. https://doi.org/10.1016/j.jece.2021.105486
doi: 10.1016/j.jece.2021.105486
Assimeddine M, Abdennouri M, Barka N, Rifi E, Sadiq M (2020) Physicochemical characterization of moroccan natural clays and the study of their adsorption capacity for the methyl orange and methylene blue removal from aqueous solution. J Environ Treat Tech 8:1258–1267. https://doi.org/10.47277/JETT/8(3)1267
doi: 10.47277/JETT/8(3)1267
Ataei A, Mehrizad A, Zare K (2021) Photocatalytic degradation of cefazoline antibiotic using zeolite-supported CdS/CaFe
doi: 10.1016/j.molliq.2021.115476
Bagyo ANM, Arai H, Miyata T (1997) Radiation-induced decoloration and sedimentation of colloidal disperse dyes in water. Appl Radiat Isot 48:175–181. https://doi.org/10.1016/S0969-8043(96)00182-0
doi: 10.1016/S0969-8043(96)00182-0
Barka N, Qourzal S, Assabbane A, Nounah A, Ait-Ichou Y (2010) Photocatalytic degradation of an azo reactive dye, Reactive Yellow 84, in water using an industrial titanium dioxide coated media. Arab J Chem 3:279–283. https://doi.org/10.1016/j.arabjc.2010.06.016
doi: 10.1016/j.arabjc.2010.06.016
Bhatia V, Dhir A, Ray AK (2021) Photocatalytic degradation of atenolol with graphene oxide/zinc oxide composite: optimization of process parameters using statistical method. J Photochem Photobiol A Chem 409:113136. https://doi.org/10.1016/j.jphotochem.2021.113136
doi: 10.1016/j.jphotochem.2021.113136
Boumya W, Khnifira M, Machrouhi A, Abdennouri M, Achak M, Qourzal S, Tounsadi H, Barka N (2021) Box-Behnken design for the understand of adsorption behaviors of cationic and anionic dyes by activated carbon. Desalin Water Treat 212:204–211. https://doi.org/10.5004/dwt.2020.26610
doi: 10.5004/dwt.2020.26610
Box GEP, Behnken DW (1960) Some new three level desings for the study of quantitative variables. Technometrics 2:455–475. https://doi.org/10.2307/1266454
doi: 10.2307/1266454
Chaker H, Ameur N, Saidi-Bendahou K, Djennas M, Fourmentin S (2021) Modeling and Box-Behnken design optimization of photocatalytic parameters for efficient removal of dye by lanthanum-doped mesoporous TiO
doi: 10.1016/j.jece.2020.104584
Chchiyai Z, El Bachraoui F, Tamraoui Y, Bih L, Lahmar A, Faik A, Alami J, Manoun B (2021) Design, structural evolution, optical, electrical and dielectric properties of perovskite ceramics Ba
doi: 10.1016/j.matchemphys.2021.125096
Chen J, Bradhurst DH, Dou SX, Liu HK (1999) Nickel hydroxide as an active material for the positive electrode in rechargeable alkaline batteries. J Electrochem Soc 146(10):3606–3612 (S0013-4651(99)03-064-5)
doi: 10.1149/1.1392522
Cinelli G, Cuomo F, Ambrosone L, Colella M, Ceglie A, Venditti F, Lopez F (2017) Photocatalytic degradation of a model textile dye using carbon-doped titanium dioxide and visible light. J Water Process Eng 20:71–77. https://doi.org/10.1016/j.jwpe.2017.09.014
doi: 10.1016/j.jwpe.2017.09.014
de Furtado RXS, Sabatini CA, Zaiat M, Azevedo EB (2021) Perfluorooctane sulfonic acid (PFOS) degradation by optimized heterogeneous photocatalysis (TiO
doi: 10.1016/j.jwpe.2021.101986
Dhanabal R, Velmathi S, Bose AC (2018) Fabrication of RuO
doi: 10.1016/j.jhazmat.2017.11.034
Dong X, Wang X, Wang J, Song H, Li X, Wang L, Chan-Park MB, Li CM, Chen P (2012) Synthesis of a MnO
doi: 10.1016/j.carbon.2012.06.014
Dou W, Hu X, Kong L, Peng X (2021) Photo-induced dissolution of Bi
doi: 10.1016/j.jhazmat.2021.125267
Elhalil A, Abdennouri M, Sadiq M, Kadmi Y, Favier L, Barka N (2018) Synthesis of Ba doped ZnO-Al
doi: 10.48442/IMIST.PRSM/jasi-v4i1-3.12153
Fasakin O, Oyedotun KO, Kebede M, Rohwer M, Roux LL, Mathe M, Eleruja MA, Ajayi EOB, Manyala N (2020) Preparation and physico-chemical investigation of anatase TiO
doi: 10.1016/j.egyr.2020.02.010
Glaze WH, Kang JW (1989) Advanced oxidation processes. description of a kinetic model for the oxidation of hazardous materials in aqueous media with ozone and hydrogen peroxide in a semibatch reactor. Ind Eng Chem Res 28:1573–1580. https://doi.org/10.1021/ie00095a001
doi: 10.1021/ie00095a001
Haag WR, Yao CCD (1992) Rate constants reaction of hydroxyl radicals with several drinking water contaminants. Environ Sci Technol 26:1005–1013. https://doi.org/10.1021/es00029a021
doi: 10.1021/es00029a021
Hayati P, Mehrabadi Z, Karimi M, Janczak J, Mohammadi K, Mahmoudi G, Dadi F, SoltanianFard MJ, Hasanzadeh A, Rostamnia S (2021) Photocatalytic activity of new nanostructures of an Ag(I) metal–organic framework (Ag-MOF) for the efficient degradation of MCPA and 2,4-D herbicides under sunlight irradiation. New J Chem 45:3408–3417. https://doi.org/10.1039/D0NJ02460K
doi: 10.1039/D0NJ02460K
Herney-Ramirez J, Vicente MA, Madeira LM (2010) Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment : a review. Appl Catal B Environ 98:10–26. https://doi.org/10.1016/j.apcatb.2010.05.004
doi: 10.1016/j.apcatb.2010.05.004
Hube S, Eskafi M, Hrafnkelsdóttir KF, Bjarnadóttir B, Bjarnadóttir MÁ, Axelsdóttir S, Wu B (2020) Direct membrane filtration for wastewater treatment and resource recovery: a review. Sci Total Environ 710:136375. https://doi.org/10.1016/j.scitotenv.2019.136375
doi: 10.1016/j.scitotenv.2019.136375
Ito K, Jian W, Nishijima W, Baes AU, Shoto E, Okada M (1998) Comparaison of ozonation and AOPs combined with biodegradation for removal of THM precursors in treated sewage effluents. Water Sci Technol 38:179–186. https://doi.org/10.1016/S0273-1223(98)00620-9
doi: 10.1016/S0273-1223(98)00620-9
Janani FZ, Khiar H, Taoufik N, Elhalil A, Sadiq M, Puga AV, Mansouri S, Barka N (2021) ZnO–Al
doi: 10.1016/j.mtchem.2021.100495
Kader S, Al-Mamun MdR, SuhanMdBK Md, Shuchi SB, Islam MdS (2022) Enhanced photodegradation of methyl orange dye under UV irradiation using MoO
doi: 10.1016/j.eti.2022.102476
Khiar H, Janani FZ, Elhalil A, Sadiq M, Barka N (2022) Ni
doi: 10.1016/j.apsadv.2022.100288
Lin W, Liu X, Ding A, Ngo HH, Zhang R, Nan J, Ma J, Li G (2022) Advanced oxidation processes (AOPs)-based sludge conditioning for enhanced sludge dewatering and micropollutants removal: a critical review. J Water Process Eng 45:102468. https://doi.org/10.1016/j.jwpe.2021.102468
doi: 10.1016/j.jwpe.2021.102468
Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on TiO
doi: 10.1021/cr00035a013
Liu J, Zhang Y, Chen Y, Liu Q (2022) Controllable synthesis of yolk-shell nickel phyllosilicate for CO
doi: 10.1016/j.mtnano.2022.100208
Mahmoud SA, Shereen A, Tarawnh MA (2011) Structural and optical dispersion characterisation of sprayed nickel oxide thin films. J Mod Phys 02(10):1178–1186. https://doi.org/10.4236/jmp.2011.210147
doi: 10.4236/jmp.2011.210147
Manabe S, AdavanKiliyankil V, Takiguchi S, Kumashiro T, Fugetsu B, Sakata I (2021) Graphene nanosheets homogeneously incorporated in polyurethane sponge for the elimination of water-soluble organic dyes. J Colloid Interface Sci 584:816–826. https://doi.org/10.1016/j.jcis.2020.10.012
doi: 10.1016/j.jcis.2020.10.012
Mo JH, Lee YH, Kim J, Jeong JY, Jegal J (2008) Treatment of dye aqueous solutions using nanofiltration polyamide composite membranes for the dye wastewater reuse. Dyes Pigment 76:429–434. https://doi.org/10.1016/j.dyepig.2006.09.007
doi: 10.1016/j.dyepig.2006.09.007
Mohammadi R, Alamgholiloo H, Gholipour B, Rostamnia S, Khaksar S, Farajzadeh M, Shokouhimehr M (2020) Visible-light-driven photocatalytic activity of ZnO/g-C
doi: 10.1016/j.jphotochem.2020.112786
Mokhbi Y, Korichi M, Sidrouhou HM, Chaouche K (2014) Treatment heterogeneous photocatalysis; factors influencing the photocatalytic degradation by TiO
doi: 10.1016/j.egypro.2014.06.068
Putra RP, Rachman IB, Horino H, Rzeznicka II (2022) γ-NiOOH electrocatalyst derived from a nickel dithiooxamide chelate polymer for oxygen evolution reaction in alkaline solutions. Catal Today 397–399:308–315. https://doi.org/10.1016/j.cattod.2021.08.017
doi: 10.1016/j.cattod.2021.08.017
Rao AN, Sivasankar B, Sadasivam V (2009) Kinetic studies on the photocatalytic degradation of Direct Yellow 12 in the presence of ZnO catalyst. J Mol Catal A Chem 306:77–81. https://doi.org/10.1016/j.molcata.2009.02.028
doi: 10.1016/j.molcata.2009.02.028
Rauf MA, Ashraf SS (2009) Radiation induced degradation of dyes-an overview. J Hazard Mater 166:6–16. https://doi.org/10.1016/j.jhazmat.2008.11.043
doi: 10.1016/j.jhazmat.2008.11.043
Ren G, Han H, Wang Y, Liu S, Zhao J, Meng X, Li Z (2021) Recent advances of photocatalytic application in water treatment: a review. Nanomaterials 11(7):1804. https://doi.org/10.3390/nano11071804
doi: 10.3390/nano11071804
Rostamzadeh D, Sadeghi S (2022) Ni doped zinc oxide nanoparticles supported bentonite clay for photocatalytic degradation of anionic and cationic synthetic dyes in water treatment. J Photochem Photobiol 431:113947. https://doi.org/10.1016/j.jphotochem.2022.113947
doi: 10.1016/j.jphotochem.2022.113947
Seddigi ZS (2010) Removal of Alizarin Yellow dye from water using zinc doped WO
doi: 10.1007/s00128-010-9995-y
Shaheen N, Yousuf MA, Shakir I, Zulfiqar S, Agboola PO, Warsi MF (2019) Wet chemical route synthesis of spinel oxide nano-catalysts for photocatalytic applications. Phys B Condens Matter 580:411820. https://doi.org/10.1016/j.physb.2019.411820
doi: 10.1016/j.physb.2019.411820
Shi B, Li G, Wang D, Feng C, Tang H (2007) Removal of direct dyes by coagulation: the performance of preformed polymeric aluminum species. J Hazard Mater 143:567–574. https://doi.org/10.1016/j.jhazmat.2006.09.076
doi: 10.1016/j.jhazmat.2006.09.076
Taghavi R, Rostamnia S, Farajzadeh M, Karimi-Maleh H, Wang J, Kim D, Jang HW, Luque R, Varma RS, Shokouhimehr M (2022) Magnetite metal–organic frameworks: applications in environmental remediation of heavy metals, organic contaminants, and other pollutants. Inorg Chem 61(40):15747–15783. https://doi.org/10.1021/acs.inorgchem.2c01939
doi: 10.1021/acs.inorgchem.2c01939
Tang H, Zhang W, Meng Y, Xie B, Ni Z, Xia S (2021) Investigation onto the performance and mechanism of visible light photodegradation of methyl orange catalyzed by M/CeO
doi: 10.1016/j.materresbull.2021.111497
Taoufik N, Boumya W, Janani FZ, Elhalil A, Mahjoubi FZ, Barka N (2020) Removal of emerging pharmaceutical pollutants: a systematic mapping study review. J Environ Chem. Eng 8:104251. https://doi.org/10.1016/j.jece.2020.104251
doi: 10.1016/j.jece.2020.104251
Tian K, Hu L, Li L, Zheng Q, Xin Y, Zhang G (2022) Recent advances in persulfate-based advanced oxidation processes for organic wastewater treatment. Chinese Chem Lett 33(10):4461–4477. https://doi.org/10.1016/j.cclet.2021.12.042
doi: 10.1016/j.cclet.2021.12.042
Titchou FE, Zazou H, Afanga H, El Gaayda J, AitAkbour R, Nidheesh PV, Hamdani M (2021) Removal of organic pollutants from wastewater by advanced oxidation processes and its combination with membrane processes. Chem Eng Process-Process Intensif 169:108631. https://doi.org/10.1016/j.cep.2021.108631
doi: 10.1016/j.cep.2021.108631
Vasantharaj S, Sathiyavimal S, Senthilkumar P, LewisOscar F, Pugazhendhi A (2019) Biosynthesis of iron oxide nanoparticles using leaf extract of Ruellia tuberosa: antimicrobial properties and their applications in photocatalytic degradation. J Photochem Photobiol B Biol 192:74–82. https://doi.org/10.1016/j.jphotobiol.2018.12.025
doi: 10.1016/j.jphotobiol.2018.12.025
Wang C, Pagel R, Dohrmann JK, Bahnemann DW (2006) Antenna mechanism and deaggregation concept: novel mechanistic principles for photocatalysis. Comptes Rendus Chim 9:761–773. https://doi.org/10.1016/j.crci.2005.02.053
doi: 10.1016/j.crci.2005.02.053
Xue Y, Wang Z, Naidu R, Bush R, Yang F, Liu J, Huang M (2022) Role of halide ions on organic pollutants degradation by peroxygens-based advanced oxidation processes: a critical review. Chem Eng J 433:134546. https://doi.org/10.1016/j.cej.2022.134546
doi: 10.1016/j.cej.2022.134546
Yaseen DA, Scholz M (2019) Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. Int J Environ Sci Technol 16:1193–1226. https://doi.org/10.1007/s13762-018-2130-z
doi: 10.1007/s13762-018-2130-z
Yashni G, Al-Gheethi A, Mohamed RMSR, Vo Dai-Viet N, Al-Kahtani AA, Al-Sahari M, Nor Hazhar NJ, Noman E, Alkhadher S (2021) Bio-inspired ZnO NPs synthesized from Citrus sinensis peels extract for Congo red removal from textile wastewater via photocatalysis: optimization, mechanisms, techno-economic analysis. Chemosphere 281:130661. https://doi.org/10.1016/j.chemosphere.2021.130661
doi: 10.1016/j.chemosphere.2021.130661
Young KH, Wang L, Yan S, Liao X, Meng T, Shen H, Mays WC (2017) Fabrications of high-capacity alpha-Ni(OH)
doi: 10.3390/batteries3010006