Gut enterochromaffin cells drive visceral pain and anxiety.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
04 2023
Historique:
received: 06 04 2022
accepted: 10 02 2023
medline: 7 4 2023
pubmed: 24 3 2023
entrez: 23 3 2023
Statut: ppublish

Résumé

Gastrointestinal (GI) discomfort is a hallmark of most gut disorders and represents an important component of chronic visceral pain

Identifiants

pubmed: 36949192
doi: 10.1038/s41586-023-05829-8
pii: 10.1038/s41586-023-05829-8
doi:

Substances chimiques

Serotonin 333DO1RDJY

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

137-142

Subventions

Organisme : NIA NIH HHS
ID : R01 AG062331
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK063592
Pays : United States
Organisme : NIDDK NIH HHS
ID : T32 DK007762
Pays : United States
Organisme : NINDS NIH HHS
ID : U01 NS113869
Pays : United States
Organisme : NINDS NIH HHS
ID : R35 NS105038
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK121657
Pays : United States
Organisme : NIDDK NIH HHS
ID : R03 DK121061
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK128346
Pays : United States

Commentaires et corrections

Type : CommentIn
Type : CommentIn

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Enck, P. et al. Irritable bowel syndrome. Nat. Rev. Dis. Primers 2, 16014 (2016).
pubmed: 27159638 pmcid: 5001845 doi: 10.1038/nrdp.2016.14
Grundy, L., Erickson, A. & Brierley, S. M. Visceral pain. Annu. Rev. Physiol. 81, 261–284 (2019).
pubmed: 30379615 doi: 10.1146/annurev-physiol-020518-114525
Bellono, N. W. et al. Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell 170, 185–198 (2017).
pubmed: 28648659 pmcid: 5839326 doi: 10.1016/j.cell.2017.05.034
Racke, K. & Schworer, H. Characterization of the role of calcium and sodium channels in the stimulus secretion coupling of 5-hydroxytryptamine release from porcine enterochromaffin cells. Naunyn Schmiedebergs Arch. Pharmacol. 347, 1–8 (1993).
pubmed: 7680436 doi: 10.1007/BF00168764
Strege, P. R. et al. Sodium channel Na
pubmed: 29142310 pmcid: 5688111 doi: 10.1038/s41598-017-15834-3
Gershon, M. D. Serotonin is a sword and a shield of the bowel: serotonin plays offense and defense. Trans. Am. Clin. Climatol. Assoc. 123, 268–280 (2012).
pubmed: 23303993 pmcid: 3540639
Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Bäckhed, F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345 (2016).
pubmed: 27259147 doi: 10.1016/j.cell.2016.05.041
Farup, P. G., Rudi, K. & Hestad, K. Faecal short-chain fatty acids—a diagnostic biomarker for irritable bowel syndrome? BMC Gastroenterol. 16, 51 (2016).
pubmed: 27121286 pmcid: 4847229 doi: 10.1186/s12876-016-0446-z
Gribble, F. M. & Reimann, F. Enteroendocrine cells: chemosensors in the intestinal epithelium. Annu. Rev. Physiol. 78, 277–299 (2016).
pubmed: 26442437 doi: 10.1146/annurev-physiol-021115-105439
Gribble, F. M. & Reimann, F. Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nat. Rev. Endocrinol. 15, 226–237 (2019).
pubmed: 30760847 doi: 10.1038/s41574-019-0168-8
Liddle, R. A. Neuropods. Cell Mol. Gastroenterol. Hepatol. 7, 739–747 (2019).
pubmed: 30710726 pmcid: 6463090 doi: 10.1016/j.jcmgh.2019.01.006
Kaelberer, M. M. et al. A gut–brain neural circuit for nutrient sensory transduction. Science 361, eaat5236 (2018).
pubmed: 30237325 pmcid: 6417812 doi: 10.1126/science.aat5236
Treichel, A. J. et al. Specialized mechanosensory epithelial cells in mouse gut intrinsic tactile sensitivity. Gastroenterology 162, 535–547 (2022).
Nozawa, K. et al. TRPA1 regulates gastrointestinal motility through serotonin release from enterochromaffin cells. Proc. Natl Acad. Sci. USA 106, 3408–3413 (2009).
pubmed: 19211797 pmcid: 2651261 doi: 10.1073/pnas.0805323106
Mawe, G. M. & Hoffman, J. M. Serotonin signalling in the gut—functions, dysfunctions and therapeutic targets. Nat. Rev. Gastroenterol. Hepatol. 10, 473–486 (2013).
pubmed: 23797870 pmcid: 4048923 doi: 10.1038/nrgastro.2013.105
Osteen, J. D. et al. Selective spider toxins reveal a role for the Na
pubmed: 27281198 pmcid: 4919188 doi: 10.1038/nature17976
Sadeghi, M. et al. Contribution of membrane receptor signalling to chronic visceral pain. Int. J. Biochem. Cell Biol. 98, 10–23 (2018).
pubmed: 29477359 doi: 10.1016/j.biocel.2018.02.017
Lu, V. B., Gribble, F. M. & Reimann, F. Free fatty acid receptors in enteroendocrine cells. Endocrinology 159, 2826–2835 (2018).
pubmed: 29688303 doi: 10.1210/en.2018-00261
Mars, R. A. T. et al. Longitudinal multi-omics reveals subset-specific mechanisms underlying irritable bowel syndrome. Cell 182, 1460–1473 (2020).
pubmed: 32916129 pmcid: 8109273 doi: 10.1016/j.cell.2020.08.007
Alcaino, C. et al. A population of gut epithelial enterochromaffin cells is mechanosensitive and requires Piezo2 to convert force into serotonin release. Proc. Natl Acad. Sci. USA 115, e7632–e7641 (2018).
pubmed: 30037999 pmcid: 6094143 doi: 10.1073/pnas.1804938115
Wang, F. et al. Mechanosensitive ion channel Piezo2 is important for enterochromaffin cell response to mechanical forces. J. Physiol. 595, 79–91 (2017).
pubmed: 27392819 doi: 10.1113/JP272718
Brierley, S. M., Jones, R. C. 3rd, Gebhart, G. F. & Blackshaw, L. A. Splanchnic and pelvic mechanosensory afferents signal different qualities of colonic stimuli in mice. Gastroenterology 127, 166–178 (2004).
pubmed: 15236183 doi: 10.1053/j.gastro.2004.04.008
Daou, I. et al. Remote optogenetic activation and sensitization of pain pathways in freely moving mice. J. Neurosci. 33, 18631–18640 (2013).
pubmed: 24259584 pmcid: 6618811 doi: 10.1523/JNEUROSCI.2424-13.2013
Kim, J. C. et al. Linking genetically defined neurons to behavior through a broadly applicable silencing allele. Neuron 63, 305–315 (2009).
pubmed: 19679071 pmcid: 2814245 doi: 10.1016/j.neuron.2009.07.010
Jensen, P. et al. Redefining the serotonergic system by genetic lineage. Nat. Neurosci. 11, 417–419 (2008).
pubmed: 18344997 pmcid: 2897136 doi: 10.1038/nn2050
Erspamer, V. & Asero, B. Identification of enteramine, the specific hormone of the enterochromaffin cell system, as 5-hydroxytryptamine. Nature 169, 800–801 (1952).
pubmed: 14941051 doi: 10.1038/169800b0
Spohn, S. N. & Mawe, G. M. Non-conventional features of peripheral serotonin signalling—the gut and beyond. Nat. Rev. Gastroenterol. Hepatol. 14, 412–420 (2017).
pubmed: 28487547 pmcid: 5672796 doi: 10.1038/nrgastro.2017.51
Brierley, S. M., Hibberd, T. J. & Spencer, N. J. Spinal afferent innervation of the colon and rectum. Front. Cell Neurosci. 12, 467 (2018).
pubmed: 30564102 pmcid: 6288476 doi: 10.3389/fncel.2018.00467
Uhlig, F. et al. Identification of a quorum sensing-dependent communication pathway mediating bacteria–gut–brain cross talk. iScience 23, 101695 (2020).
pubmed: 33163947 pmcid: 7607502 doi: 10.1016/j.isci.2020.101695
Makadia, P. A. et al. Optogenetic activation of colon epithelium of the mouse produces high-frequency bursting in extrinsic colon afferents and engages visceromotor responses. J. Neurosci. 38, 5788–5798 (2018).
pubmed: 29789376 pmcid: 6010562 doi: 10.1523/JNEUROSCI.0837-18.2018
Grundy, L. et al. Chronic linaclotide treatment reduces colitis-induced neuroplasticity and reverses persistent bladder dysfunction. JCI Insight 3, e121841 (2018).
pubmed: 30282832 pmcid: 6237488 doi: 10.1172/jci.insight.121841
Najjar, S. A. et al. Optogenetic inhibition of the colon epithelium reduces hypersensitivity in a mouse model of inflammatory bowel disease. Pain 162, 1126–1134 (2021).
pubmed: 33048854 pmcid: 7969374 doi: 10.1097/j.pain.0000000000002110
Jones, R. C. 3rd, Xu, L. & Gebhart, G. F. The mechanosensitivity of mouse colon afferent fibers and their sensitization by inflammatory mediators require transient receptor potential vanilloid 1 and acid-sensing ion channel 3. J. Neurosci. 25, 10981–10989 (2005).
pubmed: 16306411 pmcid: 6725875 doi: 10.1523/JNEUROSCI.0703-05.2005
Castro, J. et al. Activation of pruritogenic TGR5, MrgprA3, and MrgprC11 on colon-innervating afferents induces visceral hypersensitivity. JCI Insight 4, e131712 (2019).
pubmed: 31536477 pmcid: 6824308 doi: 10.1172/jci.insight.131712
Fothergill, L. J. & Furness, J. B. Diversity of enteroendocrine cells investigated at cellular and subcellular levels: the need for a new classification scheme. Histochem. Cell Biol. 150, 693–702 (2018).
pubmed: 30357510 pmcid: 6447040 doi: 10.1007/s00418-018-1746-x
Koo, A., Fothergill, L. J., Kuramoto, H. & Furness, J. B. 5-HT containing enteroendocrine cells characterised by morphologies, patterns of hormone co-expression, and relationships with nerve fibres in the mouse gastrointestinal tract. Histochem. Cell Biol. 155, 623–636 (2021).
pubmed: 33608804 doi: 10.1007/s00418-021-01972-3
Lumsden, A. L. et al. Sugar responses of human enterochromaffin cells depend on gut region, sex, and body mass. Nutrients 11, 234 (2019).
pubmed: 30678223 pmcid: 6412251 doi: 10.3390/nu11020234
Bohórquez, D. V. et al. Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells. J. Clin. Invest. 125, 782–786 (2015).
pubmed: 25555217 pmcid: 4319442 doi: 10.1172/JCI78361
Brenner, D. M. & Sayuk, G. S. Current US Food and Drug Administration-approved pharmacologic therapies for the treatment of irritable bowel syndrome with diarrhea. Adv. Ther. 37, 83–96 (2020).
pubmed: 31707713 doi: 10.1007/s12325-019-01116-z
Bradesi, S. et al. Dual role of 5-HT
pubmed: 17161536 doi: 10.1016/j.pain.2006.10.028
Miranda, A., Peles, S., McLean, P. G. & Sengupta, J. N. Effects of the 5-HT
pubmed: 16844296 doi: 10.1016/j.pain.2006.06.014
El-Ayache, N. & Galligan, J. J. 5-HT
pubmed: 30359082 doi: 10.1152/ajpgi.00131.2018
Hicks, G. A. et al. Excitation of rat colonic afferent fibres by 5-HT(3) receptors. J. Physiol. 544, 861–869 (2002).
pubmed: 12411529 pmcid: 2290619 doi: 10.1113/jphysiol.2002.025452
Ji, Y., Tang, B. & Traub, R. J. The visceromotor response to colorectal distention fluctuates with the estrous cycle in rats. Neuroscience 154, 1562–1567 (2008).
pubmed: 18550290 doi: 10.1016/j.neuroscience.2008.04.070
Gustafsson, J. K. & Greenwood-Van Meerveld, B. Amygdala activation by corticosterone alters visceral and somatic pain in cycling female rats. Am. J. Physiol. Gastrointest. Liver Physiol. 300, G1080–G1085 (2011).
pubmed: 21454447 doi: 10.1152/ajpgi.00349.2010
Ji, Y., Murphy, A. Z. & Traub, R. J. Estrogen modulates the visceromotor reflex and responses of spinal dorsal horn neurons to colorectal stimulation in the rat. J. Neurosci. 23, 3908–3915 (2003).
pubmed: 12736360 pmcid: 6742189 doi: 10.1523/JNEUROSCI.23-09-03908.2003
Balasuriya, G. K., Hill-Yardin, E. L., Gershon, M. D. & Bornstein, J. C. A sexually dimorphic effect of cholera toxin: rapid changes in colonic motility mediated via a 5-HT
pubmed: 26990461 pmcid: 4967745 doi: 10.1113/JP272071
Törnblom, H. & Drossman, D. A. Psychopharmacologic therapies for irritable bowel syndrome. Gastroenterol. Clin. North Am. 50, 655–669 (2021).
pubmed: 34304793 doi: 10.1016/j.gtc.2021.04.005
Galligan, J. J. et al. Visceral hypersensitivity in female but not in male serotonin transporter knockout rats. Neurogastroenterol. Motil. 25, e373–e381 (2013).
pubmed: 23594365 doi: 10.1111/nmo.12133
Wang, Y. C. et al. The ETS oncogene family transcription factor FEV identifies serotonin-producing cells in normal and neoplastic small intestine. Endocr. Relat. Cancer 17, 283–291 (2010).
pubmed: 20048018 doi: 10.1677/ERC-09-0243
Hennessy, M. L. et al. Activity of Tachykinin1-expressing Pet1 raphe neurons modulates the respiratory chemoreflex. J. Neurosci. 37, 1807–1819 (2017).
pubmed: 28073937 pmcid: 5320611 doi: 10.1523/JNEUROSCI.2316-16.2016
Madison, B. B. et al. Cis elements of the villin gene control expression in restricted domains of the vertical (crypt) and horizontal (duodenum, cecum) axes of the intestine. J. Biol. Chem. 277, 33275–33283 (2002).
pubmed: 12065599 doi: 10.1074/jbc.M204935200
Salvatierra, J. et al. NaV1.1 inhibition can reduce visceral hypersensitivity. JCI Insight 3, e121000 (2018).
pubmed: 29875317 pmcid: 6124407 doi: 10.1172/jci.insight.121000
Hockley, J. R. F. et al. Single-cell RNAseq reveals seven classes of colonic sensory neuron. Gut 68, 633–644 (2019).
pubmed: 29483303 doi: 10.1136/gutjnl-2017-315631
Cantu, D. A. et al. EZcalcium: open-source toolbox for analysis of calcium imaging data. Front. Neural Circuits 14, 25 (2020).
pubmed: 32499682 pmcid: 7244005 doi: 10.3389/fncir.2020.00025
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
pubmed: 22743772 doi: 10.1038/nmeth.2019
Sato, T. et al. Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).
pubmed: 19329995 doi: 10.1038/nature07935
Becker, L. et al. Age-dependent shift in macrophage polarisation causes inflammation-mediated degeneration of enteric nervous system. Gut 67, 827–836 (2018).
pubmed: 28228489 doi: 10.1136/gutjnl-2016-312940
Li, Z. S., Schmauss, C., Cuenca, A., Ratcliffe, E. & Gershon, M. D. Physiological modulation of intestinal motility by enteric dopaminergic neurons and the D2 receptor: analysis of dopamine receptor expression, location, development, and function in wild-type and knock-out mice. J. Neurosci. 26, 2798–2807 (2006).
pubmed: 16525059 pmcid: 6675162 doi: 10.1523/JNEUROSCI.4720-05.2006

Auteurs

James R Bayrer (JR)

Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA. james.bayrer@ucsf.edu.

Joel Castro (J)

College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia.
Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia.

Archana Venkataraman (A)

Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.

Kouki K Touhara (KK)

Department of Physiology, University of California, San Francisco, CA, USA.

Nathan D Rossen (ND)

Department of Physiology, University of California, San Francisco, CA, USA.
Tetrad Graduate Program, University of California, San Francisco, CA, USA.

Ryan D Morrie (RD)

Department of Physiology, University of California, San Francisco, CA, USA.
Maze Therapeutics, San Francisco, CA, USA.

Jessica Maddern (J)

College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia.
Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia.

Aenea Hendry (A)

College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia.
Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia.

Kristina N Braverman (KN)

Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA.
Jansen, Johnson & Johnson, San Diego, CA, USA.

Sonia Garcia-Caraballo (S)

College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia.
Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia.

Gudrun Schober (G)

College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia.
Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia.

Mariana Brizuela (M)

College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia.
Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia.

Fernanda M Castro Navarro (FM)

Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.

Carla Bueno-Silva (C)

Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA.

Holly A Ingraham (HA)

Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA. holly.ingraham@ucsf.edu.

Stuart M Brierley (SM)

College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia. stuart.brierley@sahmri.com.
Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia. stuart.brierley@sahmri.com.

David Julius (D)

Department of Physiology, University of California, San Francisco, CA, USA. david.julius@ucsf.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH