RBFOX2 modulates a metastatic signature of alternative splicing in pancreatic cancer.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
May 2023
Historique:
received: 13 01 2022
accepted: 10 02 2023
medline: 5 5 2023
pubmed: 24 3 2023
entrez: 23 3 2023
Statut: ppublish

Résumé

Pancreatic ductal adenocarcinoma (PDA) is characterized by aggressive local invasion and metastatic spread, leading to high lethality. Although driver gene mutations during PDA progression are conserved, no specific mutation is correlated with the dissemination of metastases

Identifiants

pubmed: 36949200
doi: 10.1038/s41586-023-05820-3
pii: 10.1038/s41586-023-05820-3
pmc: PMC10156590
mid: NIHMS1897967
doi:

Substances chimiques

RBFOX2 protein, human 0
Repressor Proteins 0
RNA Splicing Factors 0
MPRIP protein, human 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

147-153

Subventions

Organisme : NCI NIH HHS
ID : P01 CA013106
Pays : United States

Commentaires et corrections

Type : CommentIn

Informations de copyright

© 2023. The Author(s).

Références

Connor, A. A. et al. Integration of genomic and transcriptional features in pancreatic cancer reveals increased cell cycle progression in metastases. Cancer Cell 35, 267–282.e7 (2019).
pubmed: 30686769 pmcid: 6398439 doi: 10.1016/j.ccell.2018.12.010
Yachida, S. et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467, 1114–1117 (2010).
pubmed: 20981102 pmcid: 3148940 doi: 10.1038/nature09515
Makohon-Moore, A. P. et al. Limited heterogeneity of known driver gene mutations among the metastases of individual patients with pancreatic cancer. Nat. Genet. 49, 358–366 (2017).
pubmed: 28092682 pmcid: 5663439 doi: 10.1038/ng.3764
Jones, S. et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321, 1801–1806 (2008).
pubmed: 18772397 pmcid: 2848990 doi: 10.1126/science.1164368
Ryan, D. P., Hong, T. S. & Bardeesy, N. Pancreatic adenocarcinoma. N. Engl J. Med. 371, 1039–1049 (2014).
pubmed: 25207767 doi: 10.1056/NEJMra1404198
Moffitt, R. A. et al. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat. Genet. 47, 1168–78 (2015).
pubmed: 26343385 pmcid: 4912058 doi: 10.1038/ng.3398
Collisson, E. A. et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat. Med. 17, 500–503 (2011).
pubmed: 21460848 pmcid: 3755490 doi: 10.1038/nm.2344
Bailey, P. et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531, 47–52 (2016).
pubmed: 26909576 doi: 10.1038/nature16965
Martinez-Useros, J., Martin-Galan, M. & Garcia-Foncillas, J. The match between molecular subtypes, histology and microenvironment of pancreatic cancer and its relevance for chemoresistance. Cancers 13, 322 (2021).
pubmed: 33477288 pmcid: 7829908 doi: 10.3390/cancers13020322
Carrigan, P. E., Bingham, J. L., Srinvasan, S., Brentnall, T. A. & Miller, L. J. Characterization of alternative spliceoforms and the RNA splicing machinery in pancreatic cancer. Pancreas 40, 281–288 (2011).
pubmed: 21178653 pmcid: 3038180 doi: 10.1097/MPA.0b013e31820128d2
Wang, J. et al. Splice variants as novel targets in pancreatic ductal adenocarcinoma. Sci. Rep. 7, 2980 (2017).
pubmed: 28592875 pmcid: 5462735 doi: 10.1038/s41598-017-03354-z
Aung, K. L. et al. Genomics-driven precision medicine for advanced pancreatic cancer: early results from the COMPASS trial. Clin. Cancer Res. 24, 1344–1354 (2017).
pubmed: 29288237 pmcid: 5968824 doi: 10.1158/1078-0432.CCR-17-2994
Connor, A. A. et al. Association of distinct mutational signatures with correlates of increased immune activity in pancreatic ductal adenocarcinoma. JAMA Oncol. 3, 774–783 (2017).
pubmed: 27768182 doi: 10.1001/jamaoncol.2016.3916
Chan-Seng-Yue, M. et al. Transcription phenotypes of pancreatic cancer are driven by genomic events during tumor evolution. Nat. Genet. 52, 231–240 (2020).
pubmed: 31932696 doi: 10.1038/s41588-019-0566-9
Lin, K.-T. & Krainer, A. R. PSI-sigma: a comprehensive splicing-detection method for short-read and long-read RNA-seq analysis. Bioinformatics 35, 5048–5054 (2019).
pubmed: 31135034 pmcid: 6901072 doi: 10.1093/bioinformatics/btz438
Grant, C. E. & Bailey, T. L. XSTREME: comprehensive motif analysis of biological sequence datasets. Preprint at bioRxiv https://doi.org/10.1101/2021.09.02.458722 (2021).
Raftopoulou, M. & Hall, A. Cell migration: Rho GTPases lead the way. Dev. Biol. 265, 23–32 (2004).
pubmed: 14697350 doi: 10.1016/j.ydbio.2003.06.003
Damianov, A. et al. Rbfox proteins regulate splicing as part of a large multiprotein complex LASR. Cell 165, 606–619 (2016).
pubmed: 27104978 pmcid: 4841943 doi: 10.1016/j.cell.2016.03.040
Begg, B. E., Jens, M., Wang, P. Y., Minor, C. M. & Burge, C. B. Concentration-dependent splicing is enabled by Rbfox motifs of intermediate affinity. Nat. Struct. Mol. Biol. 27, 901–912 (2020).
pubmed: 32807990 pmcid: 7554199 doi: 10.1038/s41594-020-0475-8
Zhou, D., Couture, S., Scott, M. S. & Abou Elela, S. RBFOX2 alters splicing outcome in distinct binding modes with multiple protein partners. Nucleic Acids Res. 49, 8370–8383 (2021).
pubmed: 34244793 pmcid: 8373071 doi: 10.1093/nar/gkab595
Golan, T. et al. Pancreatic cancer ascites xenograft–an expeditious model mirroring advanced therapeutic resistant disease. Oncotarget 8, 40778 (2017).
pubmed: 28489577 pmcid: 5522335 doi: 10.18632/oncotarget.17253
Cohen-Eliav, M. et al. The splicing factor SRSF6 is amplified and is an oncoprotein in lung and colon cancers. J. Pathol. 229, 630–639 (2013).
pubmed: 23132731 doi: 10.1002/path.4129
Karni, R. et al. The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat. Struct. Mol. Biol. 14, 185–193 (2007).
pubmed: 17310252 pmcid: 4595851 doi: 10.1038/nsmb1209
Venables, J. P. et al. RBFOX2 is an important regulator of mesenchymal tissue-specific splicing in both normal and cancer tissues. Mol. Cell. Biol. 33, 396–405 (2013).
pubmed: 23149937 pmcid: 3554129 doi: 10.1128/MCB.01174-12
Braeutigam, C. et al. The RNA-binding protein Rbfox2: an essential regulator of EMT-driven alternative splicing and a mediator of cellular invasion. Oncogene 33, 1082–1092 (2014).
pubmed: 23435423 doi: 10.1038/onc.2013.50
Tripathi, V., Shin, J. H., Stuelten, C. H. & Zhang, Y. E. TGF-β-induced alternative splicing of TAK1 promotes EMT and drug resistance. Oncogene 38, 3185–3200 (2019).
pubmed: 30626936 pmcid: 6486402 doi: 10.1038/s41388-018-0655-8
Ahuja, N. et al. Hypoxia-induced TGF-β–RBFOX2–ESRP1 axis regulates human MENA alternative splicing and promotes EMT in breast cancer. NAR Cancer 2, zcaa021 (2020).
pubmed: 33089214 pmcid: 7116222 doi: 10.1093/narcan/zcaa021
Venables, J. P. et al. Cancer-associated regulation of alternative splicing. Nat. Struct. Mol. Biol. 16, 670–676 (2009).
pubmed: 19448617 doi: 10.1038/nsmb.1608
Parsons, J. T., Horwitz, A. R. & Schwartz, M. A. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat. Rev. Mol. Cell Biol. 11, 633–643 (2010). 2010 11:9.
pubmed: 20729930 pmcid: 2992881 doi: 10.1038/nrm2957
Seetharaman, S. & Etienne-Manneville, S. Microtubules at focal adhesions—a double-edged sword. J. Cell Sci. 132, jcs232843 (2019).
pubmed: 31597743 doi: 10.1242/jcs.232843
Xu, W., Alpha, K. M., Zehrbach, N. M. & Turner, C. E. Paxillin promotes breast tumor collective cell invasion through maintenance of adherens junction integrity. Mol. Biol. Cell 33, ar14 (2022).
pubmed: 34851720 pmcid: 9236150 doi: 10.1091/mbc.E21-09-0432
Zhong, Y. et al. MYH9-dependent polarization of ATG9B promotes colorectal cancer metastasis by accelerating focal adhesion assembly. Cell Death Differ. 28, 3251–3269 (2021).
pubmed: 34131310 pmcid: 8629984 doi: 10.1038/s41418-021-00813-z
Humphries-Bickley, T. et al. Characterization of a dual Rac/Cdc42 inhibitor MBQ-167 in metastatic cancer. Mol. Cancer Ther. 16, 805–818 (2017).
pubmed: 28450422 pmcid: 5418092 doi: 10.1158/1535-7163.MCT-16-0442
Poppe, D. et al. Azathioprine suppresses ezrin-radixin-moesin-dependent T cell-APC conjugation through inhibition of Vav guanosine exchange activity on Rac proteins. J. Immunol. 176, 640–651 (2006).
pubmed: 16365460 doi: 10.4049/jimmunol.176.1.640
Tiede, I. et al. CD28-dependent Rac1 activation is the molecular target of azathioprine in primary human CD4
pubmed: 12697733 pmcid: 152932 doi: 10.1172/JCI16432
Koga, Y. & Ikebe, M. p116Rip decreases myosin II phosphorylation by activating myosin light chain phosphatase and by inactivating RhoA. J. Biol. Chem. 280, 4983–4991 (2005).
pubmed: 15545284 doi: 10.1074/jbc.M410909200
Mulder, J., Ariaens, A., van den Boomen, D. & Moolenaar, W. H. p116
pubmed: 15469989 pmcid: 532030 doi: 10.1091/mbc.e04-04-0275
Johnson, J. L. et al. An atlas of substrate specificities for the human serine/threonine kinome. Nature 613, 759–766 (2023). 2023 613:7945.
pubmed: 36631611 pmcid: 9876800 doi: 10.1038/s41586-022-05575-3
Varadi, M. et al. AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2022).
pubmed: 34791371 doi: 10.1093/nar/gkab1061
Sellier, C. rbFOX1/MBNL1 competition for CCUG RNA repeats binding contributes to myotonic dystrophy type1/type 2 differences. Nat. Commun. 9, 2009 (2018).
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886 doi: 10.1093/bioinformatics/bts635
Jassal, B. et al. The reactome pathway knowledgebase. Nucleic Acids Res. 48, D498–D503 (2020).
pubmed: 31691815
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550 (2014).
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
Bailey, T. L., Johnson, J., Grant, C. E. & Noble, W. S. The MEME suite. Nucleic Acids Res. 43, W39–W49 (2015).
pubmed: 25953851 pmcid: 4489269 doi: 10.1093/nar/gkv416
Golan, T. et al. Recapitulating the clinical scenario of BRCA-associated pancreatic cancer in pre-clinical models. Int. J. Cancer 143, 179–183 (2018).
pubmed: 29396858 doi: 10.1002/ijc.31292
Labun, K. et al. CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Res. 47, W171–W174 (2019).
pubmed: 31106371 pmcid: 6602426 doi: 10.1093/nar/gkz365
Beucher, A. & Cebola, I. One-step dual CRISPR/Cas9 guide RNA cloning protocol. Protocol Exchange https://doi.org/10.21203/rs.2.1831/v1 (2019).
Johnson, J. L. et al. An atlas of substrate specificities for the human serine/threonine kinome. Nature 613, 759–766 (2023).
pubmed: 36631611 pmcid: 9876800 doi: 10.1038/s41586-022-05575-3
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
pubmed: 34265844 pmcid: 8371605 doi: 10.1038/s41586-021-03819-2
Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).
pubmed: 17703201 doi: 10.1038/nprot.2007.261
Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).
pubmed: 19029910 doi: 10.1038/nbt.1511
Cox, J. et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics 13, 2513–2526 (2014).
pubmed: 24942700 pmcid: 4159666 doi: 10.1074/mcp.M113.031591
Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016).
pubmed: 27348712 doi: 10.1038/nmeth.3901

Auteurs

Amina Jbara (A)

Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel.

Kuan-Ting Lin (KT)

Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.

Chani Stossel (C)

Division of Oncology, Sheba Medical Center Tel Hashomer, Ramat-Gan, Israel.

Zahava Siegfried (Z)

Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel.

Haya Shqerat (H)

Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel.

Adi Amar-Schwartz (A)

Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel.

Ela Elyada (E)

Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel.

Maxim Mogilevsky (M)

Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel.

Maria Raitses-Gurevich (M)

Division of Oncology, Sheba Medical Center Tel Hashomer, Ramat-Gan, Israel.

Jared L Johnson (JL)

Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
Department of Medicine, Weill Cornell Medicine, New York, NY, USA.

Tomer M Yaron (TM)

Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.

Ofek Ovadia (O)

Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel.

Gun Ho Jang (GH)

Department of Surgery, University of Toronto, Toronto, Ontario, Canada.

Miri Danan-Gotthold (M)

The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.

Lewis C Cantley (LC)

Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
Department of Medicine, Weill Cornell Medicine, New York, NY, USA.

Erez Y Levanon (EY)

The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.

Steven Gallinger (S)

Department of Surgery, University of Toronto, Toronto, Ontario, Canada.

Adrian R Krainer (AR)

Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.

Talia Golan (T)

Division of Oncology, Sheba Medical Center Tel Hashomer, Ramat-Gan, Israel.

Rotem Karni (R)

Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel. rotemka@ekmd.huji.ac.il.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH