RBFOX2 modulates a metastatic signature of alternative splicing in pancreatic cancer.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
May 2023
May 2023
Historique:
received:
13
01
2022
accepted:
10
02
2023
medline:
5
5
2023
pubmed:
24
3
2023
entrez:
23
3
2023
Statut:
ppublish
Résumé
Pancreatic ductal adenocarcinoma (PDA) is characterized by aggressive local invasion and metastatic spread, leading to high lethality. Although driver gene mutations during PDA progression are conserved, no specific mutation is correlated with the dissemination of metastases
Identifiants
pubmed: 36949200
doi: 10.1038/s41586-023-05820-3
pii: 10.1038/s41586-023-05820-3
pmc: PMC10156590
mid: NIHMS1897967
doi:
Substances chimiques
RBFOX2 protein, human
0
Repressor Proteins
0
RNA Splicing Factors
0
MPRIP protein, human
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
147-153Subventions
Organisme : NCI NIH HHS
ID : P01 CA013106
Pays : United States
Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2023. The Author(s).
Références
Connor, A. A. et al. Integration of genomic and transcriptional features in pancreatic cancer reveals increased cell cycle progression in metastases. Cancer Cell 35, 267–282.e7 (2019).
pubmed: 30686769
pmcid: 6398439
doi: 10.1016/j.ccell.2018.12.010
Yachida, S. et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467, 1114–1117 (2010).
pubmed: 20981102
pmcid: 3148940
doi: 10.1038/nature09515
Makohon-Moore, A. P. et al. Limited heterogeneity of known driver gene mutations among the metastases of individual patients with pancreatic cancer. Nat. Genet. 49, 358–366 (2017).
pubmed: 28092682
pmcid: 5663439
doi: 10.1038/ng.3764
Jones, S. et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321, 1801–1806 (2008).
pubmed: 18772397
pmcid: 2848990
doi: 10.1126/science.1164368
Ryan, D. P., Hong, T. S. & Bardeesy, N. Pancreatic adenocarcinoma. N. Engl J. Med. 371, 1039–1049 (2014).
pubmed: 25207767
doi: 10.1056/NEJMra1404198
Moffitt, R. A. et al. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat. Genet. 47, 1168–78 (2015).
pubmed: 26343385
pmcid: 4912058
doi: 10.1038/ng.3398
Collisson, E. A. et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat. Med. 17, 500–503 (2011).
pubmed: 21460848
pmcid: 3755490
doi: 10.1038/nm.2344
Bailey, P. et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531, 47–52 (2016).
pubmed: 26909576
doi: 10.1038/nature16965
Martinez-Useros, J., Martin-Galan, M. & Garcia-Foncillas, J. The match between molecular subtypes, histology and microenvironment of pancreatic cancer and its relevance for chemoresistance. Cancers 13, 322 (2021).
pubmed: 33477288
pmcid: 7829908
doi: 10.3390/cancers13020322
Carrigan, P. E., Bingham, J. L., Srinvasan, S., Brentnall, T. A. & Miller, L. J. Characterization of alternative spliceoforms and the RNA splicing machinery in pancreatic cancer. Pancreas 40, 281–288 (2011).
pubmed: 21178653
pmcid: 3038180
doi: 10.1097/MPA.0b013e31820128d2
Wang, J. et al. Splice variants as novel targets in pancreatic ductal adenocarcinoma. Sci. Rep. 7, 2980 (2017).
pubmed: 28592875
pmcid: 5462735
doi: 10.1038/s41598-017-03354-z
Aung, K. L. et al. Genomics-driven precision medicine for advanced pancreatic cancer: early results from the COMPASS trial. Clin. Cancer Res. 24, 1344–1354 (2017).
pubmed: 29288237
pmcid: 5968824
doi: 10.1158/1078-0432.CCR-17-2994
Connor, A. A. et al. Association of distinct mutational signatures with correlates of increased immune activity in pancreatic ductal adenocarcinoma. JAMA Oncol. 3, 774–783 (2017).
pubmed: 27768182
doi: 10.1001/jamaoncol.2016.3916
Chan-Seng-Yue, M. et al. Transcription phenotypes of pancreatic cancer are driven by genomic events during tumor evolution. Nat. Genet. 52, 231–240 (2020).
pubmed: 31932696
doi: 10.1038/s41588-019-0566-9
Lin, K.-T. & Krainer, A. R. PSI-sigma: a comprehensive splicing-detection method for short-read and long-read RNA-seq analysis. Bioinformatics 35, 5048–5054 (2019).
pubmed: 31135034
pmcid: 6901072
doi: 10.1093/bioinformatics/btz438
Grant, C. E. & Bailey, T. L. XSTREME: comprehensive motif analysis of biological sequence datasets. Preprint at bioRxiv https://doi.org/10.1101/2021.09.02.458722 (2021).
Raftopoulou, M. & Hall, A. Cell migration: Rho GTPases lead the way. Dev. Biol. 265, 23–32 (2004).
pubmed: 14697350
doi: 10.1016/j.ydbio.2003.06.003
Damianov, A. et al. Rbfox proteins regulate splicing as part of a large multiprotein complex LASR. Cell 165, 606–619 (2016).
pubmed: 27104978
pmcid: 4841943
doi: 10.1016/j.cell.2016.03.040
Begg, B. E., Jens, M., Wang, P. Y., Minor, C. M. & Burge, C. B. Concentration-dependent splicing is enabled by Rbfox motifs of intermediate affinity. Nat. Struct. Mol. Biol. 27, 901–912 (2020).
pubmed: 32807990
pmcid: 7554199
doi: 10.1038/s41594-020-0475-8
Zhou, D., Couture, S., Scott, M. S. & Abou Elela, S. RBFOX2 alters splicing outcome in distinct binding modes with multiple protein partners. Nucleic Acids Res. 49, 8370–8383 (2021).
pubmed: 34244793
pmcid: 8373071
doi: 10.1093/nar/gkab595
Golan, T. et al. Pancreatic cancer ascites xenograft–an expeditious model mirroring advanced therapeutic resistant disease. Oncotarget 8, 40778 (2017).
pubmed: 28489577
pmcid: 5522335
doi: 10.18632/oncotarget.17253
Cohen-Eliav, M. et al. The splicing factor SRSF6 is amplified and is an oncoprotein in lung and colon cancers. J. Pathol. 229, 630–639 (2013).
pubmed: 23132731
doi: 10.1002/path.4129
Karni, R. et al. The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat. Struct. Mol. Biol. 14, 185–193 (2007).
pubmed: 17310252
pmcid: 4595851
doi: 10.1038/nsmb1209
Venables, J. P. et al. RBFOX2 is an important regulator of mesenchymal tissue-specific splicing in both normal and cancer tissues. Mol. Cell. Biol. 33, 396–405 (2013).
pubmed: 23149937
pmcid: 3554129
doi: 10.1128/MCB.01174-12
Braeutigam, C. et al. The RNA-binding protein Rbfox2: an essential regulator of EMT-driven alternative splicing and a mediator of cellular invasion. Oncogene 33, 1082–1092 (2014).
pubmed: 23435423
doi: 10.1038/onc.2013.50
Tripathi, V., Shin, J. H., Stuelten, C. H. & Zhang, Y. E. TGF-β-induced alternative splicing of TAK1 promotes EMT and drug resistance. Oncogene 38, 3185–3200 (2019).
pubmed: 30626936
pmcid: 6486402
doi: 10.1038/s41388-018-0655-8
Ahuja, N. et al. Hypoxia-induced TGF-β–RBFOX2–ESRP1 axis regulates human MENA alternative splicing and promotes EMT in breast cancer. NAR Cancer 2, zcaa021 (2020).
pubmed: 33089214
pmcid: 7116222
doi: 10.1093/narcan/zcaa021
Venables, J. P. et al. Cancer-associated regulation of alternative splicing. Nat. Struct. Mol. Biol. 16, 670–676 (2009).
pubmed: 19448617
doi: 10.1038/nsmb.1608
Parsons, J. T., Horwitz, A. R. & Schwartz, M. A. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat. Rev. Mol. Cell Biol. 11, 633–643 (2010). 2010 11:9.
pubmed: 20729930
pmcid: 2992881
doi: 10.1038/nrm2957
Seetharaman, S. & Etienne-Manneville, S. Microtubules at focal adhesions—a double-edged sword. J. Cell Sci. 132, jcs232843 (2019).
pubmed: 31597743
doi: 10.1242/jcs.232843
Xu, W., Alpha, K. M., Zehrbach, N. M. & Turner, C. E. Paxillin promotes breast tumor collective cell invasion through maintenance of adherens junction integrity. Mol. Biol. Cell 33, ar14 (2022).
pubmed: 34851720
pmcid: 9236150
doi: 10.1091/mbc.E21-09-0432
Zhong, Y. et al. MYH9-dependent polarization of ATG9B promotes colorectal cancer metastasis by accelerating focal adhesion assembly. Cell Death Differ. 28, 3251–3269 (2021).
pubmed: 34131310
pmcid: 8629984
doi: 10.1038/s41418-021-00813-z
Humphries-Bickley, T. et al. Characterization of a dual Rac/Cdc42 inhibitor MBQ-167 in metastatic cancer. Mol. Cancer Ther. 16, 805–818 (2017).
pubmed: 28450422
pmcid: 5418092
doi: 10.1158/1535-7163.MCT-16-0442
Poppe, D. et al. Azathioprine suppresses ezrin-radixin-moesin-dependent T cell-APC conjugation through inhibition of Vav guanosine exchange activity on Rac proteins. J. Immunol. 176, 640–651 (2006).
pubmed: 16365460
doi: 10.4049/jimmunol.176.1.640
Tiede, I. et al. CD28-dependent Rac1 activation is the molecular target of azathioprine in primary human CD4
pubmed: 12697733
pmcid: 152932
doi: 10.1172/JCI16432
Koga, Y. & Ikebe, M. p116Rip decreases myosin II phosphorylation by activating myosin light chain phosphatase and by inactivating RhoA. J. Biol. Chem. 280, 4983–4991 (2005).
pubmed: 15545284
doi: 10.1074/jbc.M410909200
Mulder, J., Ariaens, A., van den Boomen, D. & Moolenaar, W. H. p116
pubmed: 15469989
pmcid: 532030
doi: 10.1091/mbc.e04-04-0275
Johnson, J. L. et al. An atlas of substrate specificities for the human serine/threonine kinome. Nature 613, 759–766 (2023). 2023 613:7945.
pubmed: 36631611
pmcid: 9876800
doi: 10.1038/s41586-022-05575-3
Varadi, M. et al. AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2022).
pubmed: 34791371
doi: 10.1093/nar/gkab1061
Sellier, C. rbFOX1/MBNL1 competition for CCUG RNA repeats binding contributes to myotonic dystrophy type1/type 2 differences. Nat. Commun. 9, 2009 (2018).
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886
doi: 10.1093/bioinformatics/bts635
Jassal, B. et al. The reactome pathway knowledgebase. Nucleic Acids Res. 48, D498–D503 (2020).
pubmed: 31691815
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550 (2014).
pubmed: 25516281
pmcid: 4302049
doi: 10.1186/s13059-014-0550-8
Bailey, T. L., Johnson, J., Grant, C. E. & Noble, W. S. The MEME suite. Nucleic Acids Res. 43, W39–W49 (2015).
pubmed: 25953851
pmcid: 4489269
doi: 10.1093/nar/gkv416
Golan, T. et al. Recapitulating the clinical scenario of BRCA-associated pancreatic cancer in pre-clinical models. Int. J. Cancer 143, 179–183 (2018).
pubmed: 29396858
doi: 10.1002/ijc.31292
Labun, K. et al. CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Res. 47, W171–W174 (2019).
pubmed: 31106371
pmcid: 6602426
doi: 10.1093/nar/gkz365
Beucher, A. & Cebola, I. One-step dual CRISPR/Cas9 guide RNA cloning protocol. Protocol Exchange https://doi.org/10.21203/rs.2.1831/v1 (2019).
Johnson, J. L. et al. An atlas of substrate specificities for the human serine/threonine kinome. Nature 613, 759–766 (2023).
pubmed: 36631611
pmcid: 9876800
doi: 10.1038/s41586-022-05575-3
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
pubmed: 34265844
pmcid: 8371605
doi: 10.1038/s41586-021-03819-2
Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).
pubmed: 17703201
doi: 10.1038/nprot.2007.261
Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).
pubmed: 19029910
doi: 10.1038/nbt.1511
Cox, J. et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics 13, 2513–2526 (2014).
pubmed: 24942700
pmcid: 4159666
doi: 10.1074/mcp.M113.031591
Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016).
pubmed: 27348712
doi: 10.1038/nmeth.3901