Guidelines for Neuroprognostication in Comatose Adult Survivors of Cardiac Arrest.
Cardiac arrest
Coma
Functional status
Mortality
Prognosis
Journal
Neurocritical care
ISSN: 1556-0961
Titre abrégé: Neurocrit Care
Pays: United States
ID NLM: 101156086
Informations de publication
Date de publication:
06 2023
06 2023
Historique:
received:
19
01
2023
accepted:
30
01
2023
medline:
7
6
2023
pubmed:
24
3
2023
entrez:
23
3
2023
Statut:
ppublish
Résumé
Among cardiac arrest survivors, about half remain comatose 72 h following return of spontaneous circulation (ROSC). Prognostication of poor neurological outcome in this population may result in withdrawal of life-sustaining therapy and death. The objective of this article is to provide recommendations on the reliability of select clinical predictors that serve as the basis of neuroprognostication and provide guidance to clinicians counseling surrogates of comatose cardiac arrest survivors. A narrative systematic review was completed using Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology. Candidate predictors, which included clinical variables and prediction models, were selected based on clinical relevance and the presence of an appropriate body of evidence. The Population, Intervention, Comparator, Outcome, Timing, Setting (PICOTS) question was framed as follows: "When counseling surrogates of comatose adult survivors of cardiac arrest, should [predictor, with time of assessment if appropriate] be considered a reliable predictor of poor functional outcome assessed at 3 months or later?" Additional full-text screening criteria were used to exclude small and lower-quality studies. Following construction of the evidence profile and summary of findings, recommendations were based on four GRADE criteria: quality of evidence, balance of desirable and undesirable consequences, values and preferences, and resource use. In addition, good practice recommendations addressed essential principles of neuroprognostication that could not be framed in PICOTS format. Eleven candidate clinical variables and three prediction models were selected based on clinical relevance and the presence of an appropriate body of literature. A total of 72 articles met our eligibility criteria to guide recommendations. Good practice recommendations include waiting 72 h following ROSC/rewarming prior to neuroprognostication, avoiding sedation or other confounders, the use of multimodal assessment, and an extended period of observation for awakening in patients with an indeterminate prognosis, if consistent with goals of care. The bilateral absence of pupillary light response > 72 h from ROSC and the bilateral absence of N20 response on somatosensory evoked potential testing were identified as reliable predictors. Computed tomography or magnetic resonance imaging of the brain > 48 h from ROSC and electroencephalography > 72 h from ROSC were identified as moderately reliable predictors. These guidelines provide recommendations on the reliability of predictors of poor outcome in the context of counseling surrogates of comatose survivors of cardiac arrest and suggest broad principles of neuroprognostication. Few predictors were considered reliable or moderately reliable based on the available body of evidence.
Sections du résumé
BACKGROUND
Among cardiac arrest survivors, about half remain comatose 72 h following return of spontaneous circulation (ROSC). Prognostication of poor neurological outcome in this population may result in withdrawal of life-sustaining therapy and death. The objective of this article is to provide recommendations on the reliability of select clinical predictors that serve as the basis of neuroprognostication and provide guidance to clinicians counseling surrogates of comatose cardiac arrest survivors.
METHODS
A narrative systematic review was completed using Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology. Candidate predictors, which included clinical variables and prediction models, were selected based on clinical relevance and the presence of an appropriate body of evidence. The Population, Intervention, Comparator, Outcome, Timing, Setting (PICOTS) question was framed as follows: "When counseling surrogates of comatose adult survivors of cardiac arrest, should [predictor, with time of assessment if appropriate] be considered a reliable predictor of poor functional outcome assessed at 3 months or later?" Additional full-text screening criteria were used to exclude small and lower-quality studies. Following construction of the evidence profile and summary of findings, recommendations were based on four GRADE criteria: quality of evidence, balance of desirable and undesirable consequences, values and preferences, and resource use. In addition, good practice recommendations addressed essential principles of neuroprognostication that could not be framed in PICOTS format.
RESULTS
Eleven candidate clinical variables and three prediction models were selected based on clinical relevance and the presence of an appropriate body of literature. A total of 72 articles met our eligibility criteria to guide recommendations. Good practice recommendations include waiting 72 h following ROSC/rewarming prior to neuroprognostication, avoiding sedation or other confounders, the use of multimodal assessment, and an extended period of observation for awakening in patients with an indeterminate prognosis, if consistent with goals of care. The bilateral absence of pupillary light response > 72 h from ROSC and the bilateral absence of N20 response on somatosensory evoked potential testing were identified as reliable predictors. Computed tomography or magnetic resonance imaging of the brain > 48 h from ROSC and electroencephalography > 72 h from ROSC were identified as moderately reliable predictors.
CONCLUSIONS
These guidelines provide recommendations on the reliability of predictors of poor outcome in the context of counseling surrogates of comatose survivors of cardiac arrest and suggest broad principles of neuroprognostication. Few predictors were considered reliable or moderately reliable based on the available body of evidence.
Identifiants
pubmed: 36949360
doi: 10.1007/s12028-023-01688-3
pii: 10.1007/s12028-023-01688-3
pmc: PMC10241762
doi:
Types de publication
Guideline
Journal Article
Systematic Review
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
533-563Informations de copyright
© 2023. The Author(s).
Références
Cardiac Arrest Registry to Enhance Survival (CARES) 2020 annual report. 2020 [cited 2021 November 17 2021]. https://mycares.net/sitepages/uploads/2021/2020_flipbook/index.html?page=1 .
Virani SS, Alonso A, Aparicio HJ, et al. Heart disease and stroke statistics-2021 update: a report from the American Heart Association. Circulation. 2021;143(8):e254–743.
pubmed: 33501848
doi: 10.1161/CIR.0000000000000950
Thomassen A, Wernberg M. Prevalence and prognostic significance of coma after cardiac arrest outside intensive care and coronary units. Acta Anaesthesiol Scand. 1979;23(2):143–8.
pubmed: 442945
doi: 10.1111/j.1399-6576.1979.tb01434.x
Dragancea I, Horn J, Kuiper M, et al. Neurological prognostication after cardiac arrest and targeted temperature management 33 degrees C versus 36 degrees C: results from a randomised controlled clinical trial. Resuscitation. 2015;93:164–70.
pubmed: 25921544
doi: 10.1016/j.resuscitation.2015.04.013
Mulder M, Gibbs HG, Smith SW, et al. Awakening and withdrawal of life-sustaining treatment in cardiac arrest survivors treated with therapeutic hypothermia*. Crit Care Med. 2014;42(12):2493–9.
pubmed: 25121961
pmcid: 4428607
doi: 10.1097/CCM.0000000000000540
May TL, Ruthazer R, Riker RR, et al. Early withdrawal of life support after resuscitation from cardiac arrest is common and may result in additional deaths. Resuscitation. 2019;139:308–13.
pubmed: 30836171
pmcid: 6555675
doi: 10.1016/j.resuscitation.2019.02.031
Dragancea I, Wise MP, Al-Subaie N, et al. Protocol-driven neurological prognostication and withdrawal of life-sustaining therapy after cardiac arrest and targeted temperature management. Resuscitation. 2017;117:50–7.
pubmed: 28506865
doi: 10.1016/j.resuscitation.2017.05.014
Geocadin RG, Callaway CW, Fink EL, et al. Standards for studies of neurological prognostication in comatose survivors of cardiac arrest: a scientific statement from the American Heart Association. Circulation. 2019;140(9):e517–42.
pubmed: 31291775
doi: 10.1161/CIR.0000000000000702
Steinberg A, Callaway C, Dezfulian C, Elmer J. Are providers overconfident in predicting outcome after cardiac arrest? Resuscitation. 2020;153:97–104.
pubmed: 32544415
pmcid: 7390696
doi: 10.1016/j.resuscitation.2020.06.004
Sandroni C, D’Arrigo S, Cacciola S, et al. Prediction of good neurological outcome in comatose survivors of cardiac arrest: a systematic review. Intensive Care Med. 2022;48(4):389–413.
pubmed: 35244745
pmcid: 8940794
doi: 10.1007/s00134-022-06618-z
Brain Resuscitation Clinical Trial I Study Group. A randomized clinical study of cardiopulmonary-cerebral resuscitation: design, methods, and patient characteristics. Am J Emerg Med. 1986;4(1):72–86.
doi: 10.1016/0735-6757(86)90255-X
Cummins RO, Chamberlain DA, Abramson NS, et al. Recommended guidelines for uniform reporting of data from out-of-hospital cardiac arrest: the Utstein Style. A statement for health professionals from a task force of the American Heart Association, the European Resuscitation Council, the Heart and Stroke Foundation of Canada, and the Australian Resuscitation Council. Circulation. 1991;84(2):960–75.
pubmed: 1860248
doi: 10.1161/01.CIR.84.2.960
Estraneo A, Moretta P, Loreto V, et al. Predictors of recovery of responsiveness in prolonged anoxic vegetative state. Neurology. 2013;80(5):464–70.
pubmed: 23303855
doi: 10.1212/WNL.0b013e31827f0f31
Giacino JT, Katz DI, Schiff ND, et al. Comprehensive systematic review update summary: disorders of consciousness: report of the guideline development, dissemination, and implementation subcommittee of the American Academy of Neurology; the American Congress of Rehabilitation Medicine; and the National Institute on Disability, Independent Living, and Rehabilitation Research. Neurology. 2018;91(10):461–70.
pubmed: 30089617
pmcid: 6139817
doi: 10.1212/WNL.0000000000005928
Bamford JM, Sandercock PA, Warlow CP, Slattery J. Interobserver agreement for the assessment of handicap in stroke patients. Stroke. 1989;20(6):828.
pubmed: 2728057
doi: 10.1161/01.STR.20.6.828
Wilson JT, Hareendran A, Hendry A, et al. Reliability of the modified Rankin Scale across multiple raters: benefits of a structured interview. Stroke. 2005;36(4):777–81.
pubmed: 15718510
doi: 10.1161/01.STR.0000157596.13234.95
Becker LB, Aufderheide TP, Geocadin RG, et al. Primary outcomes for resuscitation science studies: a consensus statement from the American Heart Association. Circulation. 2011;124(19):2158–77.
pubmed: 21969010
pmcid: 3719404
doi: 10.1161/CIR.0b013e3182340239
Tong JT, Eyngorn I, Mlynash M, Albers GW, Hirsch KG. Functional neurologic outcomes change over the first 6 months after cardiac arrest. Crit Care Med. 2016;44(12):e1202–7.
pubmed: 27495816
pmcid: 5115936
doi: 10.1097/CCM.0000000000001963
Arrich J, Zeiner A, Sterz F, et al. Factors associated with a change in functional outcome between one month and six months after cardiac arrest: a retrospective cohort study. Resuscitation. 2009;80(8):876–80.
pubmed: 19524349
doi: 10.1016/j.resuscitation.2009.04.045
Gold B, Puertas L, Davis SP, et al. Awakening after cardiac arrest and post resuscitation hypothermia: are we pulling the plug too early? Resuscitation. 2014;85(2):211–4.
pubmed: 24231569
doi: 10.1016/j.resuscitation.2013.10.030
Phua J, Joynt GM, Nishimura M, et al. Withholding and withdrawal of life-sustaining treatments in intensive care units in Asia. JAMA Intern Med. 2015;175(3):363–71.
pubmed: 25581712
doi: 10.1001/jamainternmed.2014.7386
Van Calster B, McLernon DJ, van Smeden M, et al. Calibration: the Achilles heel of predictive analytics. BMC Med. 2019;17(1):230.
pubmed: 31842878
pmcid: 6912996
doi: 10.1186/s12916-019-1466-7
Essue BM, Laba M, Knaul F, et al. Economic burden of chronic ill health and injuries for households in low- and middle-income countries. In: Jamison DT, et al., editors. Disease control priorities: improving health and reducing povert. Washington (DC): The World Bank; 2017.
Sirag A, Mohamed Nor N. Out-of-pocket health expenditure and poverty: evidence from a dynamic panel threshold analysis. Healthcare (Basel). 2021;9(5):536.
pubmed: 34063652
doi: 10.3390/healthcare9050536
Guyatt GH, Schunemann HJ, Djulbegovic B, Akl EA. Guideline panels should not GRADE good practice statements. J Clin Epidemiol. 2015;68(5):597–600.
pubmed: 25660962
doi: 10.1016/j.jclinepi.2014.12.011
Dragancea I, Rundgren M, Englund E, Friberg H, Cronberg T. The influence of induced hypothermia and delayed prognostication on the mode of death after cardiac arrest. Resuscitation. 2013;84(3):337–42.
pubmed: 23000363
doi: 10.1016/j.resuscitation.2012.09.015
Grossestreuer AV, Abella BS, Leary M, et al. Time to awakening and neurologic outcome in therapeutic hypothermia-treated cardiac arrest patients. Resuscitation. 2013;84(12):1741–6.
pubmed: 23916554
doi: 10.1016/j.resuscitation.2013.07.009
Paul M, Bougouin W, Dumas F, et al. Comparison of two sedation regimens during targeted temperature management after cardiac arrest. Resuscitation. 2018;128:204–10.
pubmed: 29555261
doi: 10.1016/j.resuscitation.2018.03.025
Paul M, Bougouin W, Geri G, et al. Delayed awakening after cardiac arrest: prevalence and risk factors in the Parisian registry. Intensive Care Med. 2016;42(7):1128–36.
pubmed: 27098348
doi: 10.1007/s00134-016-4349-9
Maynard C, Longstreth WT Jr, Nichol G, et al. Effect of prehospital induction of mild hypothermia on 3-month neurological status and 1-year survival among adults with cardiac arrest: long-term follow-up of a randomized, clinical trial. J Am Heart Assoc. 2015;4(3):e001693.
pubmed: 25762805
pmcid: 4392445
doi: 10.1161/JAHA.114.001693
Lybeck A, Cronberg T, Aneman A, et al. Time to awakening after cardiac arrest and the association with target temperature management. Resuscitation. 2018;126:166–71.
pubmed: 29371115
doi: 10.1016/j.resuscitation.2018.01.027
Rey A, Rossetti AO, Miroz JP, Eckert P, Oddo M. Late awakening in survivors of postanoxic coma: early neurophysiologic predictors and association with ICU and long-term neurologic recovery. Crit Care Med. 2019;47(1):85–92.
pubmed: 30303838
doi: 10.1097/CCM.0000000000003470
Eid SM, Albaeni A, Vaidya D, et al. Awakening following cardiac arrest: determined by the definitions used or the therapies delivered? Resuscitation. 2016;100:38–44.
pubmed: 26784133
doi: 10.1016/j.resuscitation.2015.12.017
Zanyk-McLean K, Sawyer KN, Paternoster R, et al. Time to awakening is often delayed in patients who receive targeted temperature management after cardiac arrest. Ther Hypothermia Temp Manag. 2017;7(2):95–100.
pubmed: 27860555
doi: 10.1089/ther.2016.0030
Irisawa T, Vadeboncoeur TF, Karamooz M, et al. Duration of coma in out-of-hospital cardiac arrest survivors treated with targeted temperature management. Ann Emerg Med. 2017;69(1):36–43.
pubmed: 27238827
doi: 10.1016/j.annemergmed.2016.04.021
Ponz I, Lopez-de-Sa E, Armada E, et al. Influence of the temperature on the moment of awakening in patients treated with therapeutic hypothermia after cardiac arrest. Resuscitation. 2016;103:32–6.
pubmed: 27036662
doi: 10.1016/j.resuscitation.2016.03.017
Fugate JE, Wijdicks EF, White RD, Rabinstein AA. Does therapeutic hypothermia affect time to awakening in cardiac arrest survivors? Neurology. 2011;77(14):1346–50.
pubmed: 21900633
doi: 10.1212/WNL.0b013e318231527d
Tsai MS, Chen WJ, Chen WT, et al. Should we prolong the observation period for neurological recovery after cardiac arrest? Crit Care Med. 2021;50:389.
pmcid: 8855944
doi: 10.1097/CCM.0000000000005264
Lee DH, Cho YS, Lee BK, et al. Late awakening is common in settings without withdrawal of life-sustaining therapy in out-of-hospital cardiac arrest survivors who undergo targeted temperature management. Crit Care Med. 2021;50:235–44.
doi: 10.1097/CCM.0000000000005274
Sandroni C, D’Arrigo S, Callaway CW, et al. The rate of brain death and organ donation in patients resuscitated from cardiac arrest: a systematic review and meta-analysis. Intensive Care Med. 2016;42(11):1661–71.
pubmed: 27699457
pmcid: 5069310
doi: 10.1007/s00134-016-4549-3
Cour M, Turc J, Madelaine T, Argaud L. Risk factors for progression toward brain death after out-of-hospital cardiac arrest. Ann Intensive Care. 2019;9(1):45.
pubmed: 30963296
pmcid: 6453982
doi: 10.1186/s13613-019-0520-0
Madelaine T, Cour M, Roy P, et al. Prediction of brain death after out-of-hospital cardiac arrest: development and validation of the brain death after cardiac arrest score. Chest. 2021;160(1):139–47.
pubmed: 34116828
doi: 10.1016/j.chest.2021.01.056
Dankiewicz J, Cronberg T, Lilja G, et al. Hypothermia versus normothermia after out-of-hospital cardiac arrest. N Engl J Med. 2021;384(24):2283–94.
pubmed: 34133859
doi: 10.1056/NEJMoa2100591
Nielsen N, Wetterslev J, Cronberg T, et al. Targeted temperature management at 33 degrees C versus 36 degrees C after cardiac arrest. N Engl J Med. 2013;369(23):2197–206.
pubmed: 24237006
doi: 10.1056/NEJMoa1310519
Couret D, Boumaza D, Grisotto C, et al. Reliability of standard pupillometry practice in neurocritical care: an observational, double-blinded study. Crit Care. 2016;20:99.
pubmed: 27072310
pmcid: 4828754
doi: 10.1186/s13054-016-1239-z
Amorim E, Ghassemi MM, Lee JW, et al. Estimating the false positive rate of absent somatosensory evoked potentials in cardiac arrest prognostication. Crit Care Med. 2018;46(12):e1213–21.
pubmed: 30247243
pmcid: 6424571
doi: 10.1097/CCM.0000000000003436
Rothstein TL. SSEP retains its value as predictor of poor outcome following cardiac arrest in the era of therapeutic hypothermia. Crit Care. 2019;23(1):327.
pubmed: 31647028
pmcid: 6813072
doi: 10.1186/s13054-019-2576-5
Kerr RG, Bacon AM, Baker LL, et al. Underestimation of pupil size by critical care and neurosurgical nurses. Am J Crit Care. 2016;25(3):213–9.
pubmed: 27134226
doi: 10.4037/ajcc2016554
Olson DM, Stutzman S, Saju C, et al. Interrater reliability of pupillary assessments. Neurocrit Care. 2016;24(2):251–7.
pubmed: 26381281
doi: 10.1007/s12028-015-0182-1
Ruknuddeen MI, Ramadoss R, Rajajee V, Grzeskowiak LE, Rajagopalan RE. Early clinical prediction of neurological outcome following out of hospital cardiac arrest managed with therapeutic hypothermia. Indian J Crit Care Med. 2015;19(6):304–10.
pubmed: 26195855
pmcid: 4478670
doi: 10.4103/0972-5229.158256
Kitzinger J, Kitzinger C. Deaths after feeding-tube withdrawal from patients in vegetative and minimally conscious states: a qualitative study of family experience. Palliat Med. 2018;32(7):1180–8.
pubmed: 29569993
pmcid: 6041738
doi: 10.1177/0269216318766430
Luce JM, Alpers A. Legal aspects of withholding and withdrawing life support from critically ill patients in the United States and providing palliative care to them. Am J Respir Crit Care Med. 2000;162(6):2029–32.
pubmed: 11112108
doi: 10.1164/ajrccm.162.6.1-00
Druml C, Ballmer PE, Druml W, et al. ESPEN guideline on ethical aspects of artificial nutrition and hydration. Clin Nutr. 2016;35(3):545–56.
pubmed: 26923519
doi: 10.1016/j.clnu.2016.02.006
Tanaka M, Kodama S, Lee I, Huxtable R, Chung Y. Forgoing life-sustaining treatment: a comparative analysis of regulations in Japan, Korea, Taiwan, and England. BMC Med Ethics. 2020;21(1):99.
pubmed: 33066771
pmcid: 7563900
doi: 10.1186/s12910-020-00535-w
Han KS, Kim SJ, Lee EJ, et al. Impact of rapid lactate clearance as an indicator of hemodynamic optimization on outcome in out-of-hospital cardiac arrest: a retrospective analysis. PLoS ONE. 2019;14(4):e0214547.
pubmed: 30934011
pmcid: 6443161
doi: 10.1371/journal.pone.0214547
Hong JY, Lee DH, Oh JH, et al. Grey-white matter ratio measured using early unenhanced brain computed tomography shows no correlation with neurological outcomes in patients undergoing targeted temperature management after cardiac arrest. Resuscitation. 2019;140:161–9.
pubmed: 30953628
doi: 10.1016/j.resuscitation.2019.03.039
Lee BK, Lee SJ, Park CH, et al. Relationship between age and outcomes of comatose cardiac arrest survivors in a setting without withdrawal of life support. Resuscitation. 2017;115:75–81.
pubmed: 28392372
doi: 10.1016/j.resuscitation.2017.04.009
Lee DH, Lee SH, Oh JH, et al. Optic nerve sheath diameter measured using early unenhanced brain computed tomography shows no correlation with neurological outcomes in patients undergoing targeted temperature management after cardiac arrest. Resuscitation. 2018;128:144–50.
pubmed: 29763714
doi: 10.1016/j.resuscitation.2018.04.041
Oh JH, Lee DH, Cho IS, et al. Association between acute kidney injury and neurological outcome or death at 6months in out-of-hospital cardiac arrest: a prospective, multicenter, observational cohort study. J Crit Care. 2019;54:197–204.
pubmed: 31521016
doi: 10.1016/j.jcrc.2019.08.029
Panchal AR, Bartos JA, Cabanas JG, et al. Part 3: adult basic and advanced life support: 2020 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2020;142(16_suppl_2):S366–468.
pubmed: 33081529
doi: 10.1161/CIR.0000000000000916
Greer DM, Yang J, Scripko PD, et al. Clinical examination for prognostication in comatose cardiac arrest patients. Resuscitation. 2013;84(11):1546–51.
pubmed: 23954666
pmcid: 4041075
doi: 10.1016/j.resuscitation.2013.07.028
Rossetti AO, Oddo M, Logroscino G, Kaplan PW. Prognostication after cardiac arrest and hypothermia: a prospective study. Ann Neurol. 2010;67(3):301–7.
pubmed: 20373341
Nakstad ER, Staer-Jensen H, Wimmer H, et al. Late awakening, prognostic factors and long-term outcome in out-of-hospital cardiac arrest - results of the prospective Norwegian Cardio-Respiratory Arrest Study (NORCAST). Resuscitation. 2020;149:170–9.
pubmed: 31926258
doi: 10.1016/j.resuscitation.2019.12.031
Adnet F, Triba MN, Borron SW, et al. Cardiopulmonary resuscitation duration and survival in out-of-hospital cardiac arrest patients. Resuscitation. 2017;111:74–81.
pubmed: 27987396
doi: 10.1016/j.resuscitation.2016.11.024
Greer DM, Shemie SD, Lewis A, et al. Determination of brain death/death by neurologic criteria: the world brain death project. JAMA. 2020;324(11):1078–97.
pubmed: 32761206
doi: 10.1001/jama.2020.11586
Levy DE, Bates D, Caronna JJ, et al. Prognosis in nontraumatic coma. Ann Intern Med. 1981;94(3):293–301.
pubmed: 7224376
doi: 10.7326/0003-4819-94-3-293
Wijdicks EF, Hijdra A, Young GB, et al. Practice parameter: prediction of outcome in comatose survivors after cardiopulmonary resuscitation (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2006;67(2):203–10.
pubmed: 16864809
doi: 10.1212/01.wnl.0000227183.21314.cd
Bower MM, Sweidan AJ, Xu JC, et al. Quantitative pupillometry in the intensive care unit. J Intensive Care Med. 2021;36(4):383–91.
pubmed: 31601157
doi: 10.1177/0885066619881124
Riker RR, Sawyer ME, Fischman VG, et al. Neurological pupil index and pupillary light reflex by pupillometry predict outcome early after cardiac arrest. Neurocrit Care. 2020;32(1):152–61.
pubmed: 31069659
doi: 10.1007/s12028-019-00717-4
Pula JH, Kao AM, Kattah JC. Neuro-ophthalmologic side-effects of systemic medications. Curr Opin Ophthalmol. 2013;24(6):540–9.
pubmed: 24100367
doi: 10.1097/01.icu.0000434557.30065.a7
Caro DA, Andescavage S, Akhlaghi M, Kalynych C, Wears RL. Pupillary response to light is preserved in the majority of patients undergoing rapid sequence intubation. Ann Emerg Med. 2011;57(3):234–7.
pubmed: 21220175
doi: 10.1016/j.annemergmed.2010.10.017
Gray AT, Krejci ST, Larson MD. Neuromuscular blocking drugs do not alter the pupillary light reflex of anesthetized humans. Arch Neurol. 1997;54(5):579–84.
pubmed: 9152114
doi: 10.1001/archneur.1997.00550170055014
Hou RH, Scaife J, Freeman C, et al. Relationship between sedation and pupillary function: comparison of diazepam and diphenhydramine. Br J Clin Pharmacol. 2006;61(6):752–60.
pubmed: 16722841
pmcid: 1885114
doi: 10.1111/j.1365-2125.2006.02632.x
Haddock JH, Mercante DE, Paccione R, et al. Use of digital pupillometry to measure sedative response to propofol. Ochsner J. 2017;17(3):250–3.
pubmed: 29026357
pmcid: 5625983
Tamura T, Namiki J, Sugawara Y, et al. Early outcome prediction with quantitative pupillary response parameters after out-of-hospital cardiac arrest: a multicenter prospective observational study. PLoS ONE. 2020;15(3):e0228224.
pubmed: 32191709
pmcid: 7082023
doi: 10.1371/journal.pone.0228224
Tamura T, Namiki J, Sugawara Y, et al. Quantitative assessment of pupillary light reflex for early prediction of outcomes after out-of-hospital cardiac arrest: a multicentre prospective observational study. Resuscitation. 2018;131:108–13.
pubmed: 29958957
doi: 10.1016/j.resuscitation.2018.06.027
Oh SH, Park KN, Choi SP, et al. Prognostic value of somatosensory evoked potential in cardiac arrest patients without withdrawal of life-sustaining therapy. Resuscitation. 2020;150:154–61.
pubmed: 32169609
doi: 10.1016/j.resuscitation.2020.02.029
Sandroni C, Cariou A, Cavallaro F, et al. Prognostication in comatose survivors of cardiac arrest: an advisory statement from the European Resuscitation Council and the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40(12):1816–31.
pubmed: 25398304
pmcid: 4239787
doi: 10.1007/s00134-014-3470-x
Maciel CB, Youn TS, Barden MM, et al. Corneal reflex testing in the evaluation of a comatose patient: an ode to precise semiology and examination skills. Neurocrit Care. 2020;33(2):399–404.
pubmed: 31919808
doi: 10.1007/s12028-019-00896-0
Velly L, Perlbarg V, Boulier T, et al. Use of brain diffusion tensor imaging for the prediction of long-term neurological outcomes in patients after cardiac arrest: a multicentre, international, prospective, observational, cohort study. Lancet Neurol. 2018;17(4):317–26.
pubmed: 29500154
doi: 10.1016/S1474-4422(18)30027-9
Wu O, Batista LM, Lima FO, et al. Predicting clinical outcome in comatose cardiac arrest patients using early noncontrast computed tomography. Stroke. 2011;42(4):985–92.
pubmed: 21330629
pmcid: 3107844
doi: 10.1161/STROKEAHA.110.594879
Hifumi T, Kuroda Y, Kawakita K, et al. Effect of admission glasgow coma scale motor score on neurological outcome in out-of-hospital cardiac arrest patients receiving therapeutic hypothermia. Circ J. 2015;79(10):2201–8.
pubmed: 26212234
doi: 10.1253/circj.CJ-15-0308
Moseby-Knappe M, Westhall E, Backman S, et al. Performance of a guideline-recommended algorithm for prognostication of poor neurological outcome after cardiac arrest. Intensive Care Med. 2020;46(10):1852–62.
pubmed: 32494928
pmcid: 7527324
doi: 10.1007/s00134-020-06080-9
Chakraborty T, Braksick S, Rabinstein A, Wijdicks E. Status myoclonus with post-cardiac-arrest syndrome: implications for prognostication. Neurocrit Care. 2021;36:387–94.
pubmed: 34595685
doi: 10.1007/s12028-021-01344-8
Freund B, Kaplan PW. Myoclonus after cardiac arrest: where do we go from here? Epilepsy Curr. 2017;17(5):265–72.
pubmed: 29225535
pmcid: 5716491
doi: 10.5698/1535-7597.17.5.265
Lance JW, Adams RD. The syndrome of intention or action myoclonus as a sequel to hypoxic encephalopathy. Brain. 1963;86:111–36.
pubmed: 13928398
doi: 10.1093/brain/86.1.111
van Zijl JC, Beudel M, Hoeven HJ, et al. Electroencephalographic findings in posthypoxic myoclonus. J Intensive Care Med. 2016;31(4):270–5.
pubmed: 25670725
doi: 10.1177/0885066615571533
Legriel S, Hilly-Ginoux J, Resche-Rigon M, et al. Prognostic value of electrographic postanoxic status epilepticus in comatose cardiac-arrest survivors in the therapeutic hypothermia era. Resuscitation. 2013;84(3):343–50.
pubmed: 23146879
doi: 10.1016/j.resuscitation.2012.11.001
Sivaraju A, Gilmore EJ, Wira CR, et al. Prognostication of post-cardiac arrest coma: early clinical and electroencephalographic predictors of outcome. Intensive Care Med. 2015;41(7):1264–72.
pubmed: 25940963
doi: 10.1007/s00134-015-3834-x
Seder DB, Sunde K, Rubertsson S, et al. Neurologic outcomes and postresuscitation care of patients with myoclonus following cardiac arrest. Crit Care Med. 2015;43(5):965–72.
pubmed: 25654176
doi: 10.1097/CCM.0000000000000880
Dhakar MB, Sivaraju A, Maciel CB, et al. Electro-clinical characteristics and prognostic significance of post anoxic myoclonus. Resuscitation. 2018;131:114–20.
pubmed: 29964146
doi: 10.1016/j.resuscitation.2018.06.030
Bouwes A, van Poppelen D, Koelman JH, et al. Acute posthypoxic myoclonus after cardiopulmonary resuscitation. BMC Neurol. 2012;12:63.
pubmed: 22853736
pmcid: 3482601
doi: 10.1186/1471-2377-12-63
Lucas JM, Cocchi MN, Salciccioli J, et al. Neurologic recovery after therapeutic hypothermia in patients with post-cardiac arrest myoclonus. Resuscitation. 2012;83(2):265–9.
pubmed: 21963817
doi: 10.1016/j.resuscitation.2011.09.017
van Zijl JC, Beudel M, Elting JJ, et al. The inter-rater variability of clinical assessment in post-anoxic myoclonus. Tremor Other Hyperkinet Mov (N Y). 2017;7:470.
pubmed: 28966876
doi: 10.5334/tohm.343
Reynolds AS, Rohaut B, Holmes MG, et al. Early myoclonus following anoxic brain injury. Neurol Clin Pract. 2018;8(3):249–56.
pubmed: 30105165
pmcid: 6075972
doi: 10.1212/CPJ.0000000000000466
Elmer J, Rittenberger JC, Faro J, et al. Clinically distinct electroencephalographic phenotypes of early myoclonus after cardiac arrest. Ann Neurol. 2016;80(2):175–84.
pubmed: 27351833
pmcid: 4982787
doi: 10.1002/ana.24697
Ribeiro A, Singh R, Brunnhuber F. Clinical outcome of generalized periodic epileptiform discharges on first EEG in patients with hypoxic encephalopathy postcardiac arrest. Epilepsy Behav. 2015;49:268–72.
pubmed: 26210063
doi: 10.1016/j.yebeh.2015.06.010
Govind AS, Sukumar S, Dkhar W. Grading of cerebral infarction using CT-Hounsfield Unit to report the Hounsfield Unit in acute, subacute and chronic stroke. Int J Curr Res. 2015;7(7):17874–8.
Torbey MT, Selim M, Knorr J, Bigelow C, Recht L. Quantitative analysis of the loss of distinction between gray and white matter in comatose patients after cardiac arrest. Stroke. 2000;31(9):2163–7.
pubmed: 10978046
doi: 10.1161/01.STR.31.9.2163
Kirsch K, Heymel S, Gunther A, et al. Prognostication of neurologic outcome using gray-white-matter-ratio in comatose patients after cardiac arrest. BMC Neurol. 2021;21(1):456.
pubmed: 34809608
pmcid: 8607613
doi: 10.1186/s12883-021-02480-6
Lopez Soto C, Dragoi L, Heyn CC, et al. Imaging for neuroprognostication after cardiac arrest: systematic review and meta-analysis. Neurocrit Care. 2020;32(1):206–16.
pubmed: 31549351
doi: 10.1007/s12028-019-00842-0
Moseby-Knappe M, Mattsson N, Nielsen N, et al. Serum neurofilament light chain for prognosis of outcome after cardiac arrest. JAMA Neurol. 2019;76(1):64–71.
pubmed: 30383090
doi: 10.1001/jamaneurol.2018.3223
Edward Boas F, Fleischmann D. CT artifacts: causes and reduction techniques. Imaging Med. 2012;4(2):229–40.
doi: 10.2217/iim.12.13
Oh SH, Park KN, Choi SP, et al. Beyond dichotomy: patterns and amplitudes of SSEPs and neurological outcomes after cardiac arrest. Crit Care. 2019;23(1):224.
pubmed: 31215475
pmcid: 6582536
doi: 10.1186/s13054-019-2510-x
Moon HK, Jang J, Park KN, et al. Quantitative analysis of relative volume of low apparent diffusion coefficient value can predict neurologic outcome after cardiac arrest. Resuscitation. 2018;126:36–42.
pubmed: 29474879
doi: 10.1016/j.resuscitation.2018.02.020
Hirsch KG, Fischbein N, Mlynash M, et al. Prognostic value of diffusion-weighted MRI for post-cardiac arrest coma. Neurology. 2020;94(16):e1684–92.
pubmed: 32269116
pmcid: 7282878
doi: 10.1212/WNL.0000000000009289
Hirsch KG, Mlynash M, Eyngorn I, et al. Multi-center study of diffusion-weighted imaging in coma after cardiac arrest. Neurocrit Care. 2016;24(1):82–9.
pubmed: 26156112
doi: 10.1007/s12028-015-0179-9
Hirsch KG, Mlynash M, Jansen S, et al. Prognostic value of a qualitative brain MRI scoring system after cardiac arrest. J Neuroimaging. 2015;25(3):430–7.
pubmed: 25040353
doi: 10.1111/jon.12143
In YN, Lee IH, Park JS, et al. Delayed head CT in out-of-hospital cardiac arrest survivors: does this improve predictive performance of neurological outcome? Resuscitation. 2022;172:1–8.
pubmed: 35026330
doi: 10.1016/j.resuscitation.2022.01.003
Kim J, Kim K, Hong S, et al. Low apparent diffusion coefficient cluster-based analysis of diffusion-weighted MRI for prognostication of out-of-hospital cardiac arrest survivors. Resuscitation. 2013;84(10):1393–9.
pubmed: 23603152
doi: 10.1016/j.resuscitation.2013.04.011
Finelli PF. Diagnostic approach to restricted-diffusion patterns on MR imaging. Neurol Clin Pract. 2012;2(4):287–93.
pubmed: 30123680
pmcid: 5829469
doi: 10.1212/CPJ.0b013e318278bee1
Rosario M, McMahon K, Finelli PF. Diffusion-weighted imaging in acute hyperammonemic encephalopathy. Neurohospitalist. 2013;3(3):125–30.
pubmed: 24167645
pmcid: 3805439
doi: 10.1177/1941874412467806
Hubers A, Thoma K, Schocke M, et al. Acute DWI reductions in patients after single epileptic seizures: more common than assumed. Front Neurol. 2018;9:550.
pubmed: 30140246
pmcid: 6094998
doi: 10.3389/fneur.2018.00550
Rennebaum F, Kassubek J, Pinkhardt E, et al. Status epilepticus: clinical characteristics and EEG patterns associated with and without MRI diffusion restriction in 69 patients. Epilepsy Res. 2016;120:55–64.
pubmed: 26719998
doi: 10.1016/j.eplepsyres.2015.12.004
Jang JH, Park WB, Lim YS, et al. Combination of S100B and procalcitonin improves prognostic performance compared to either alone in patients with cardiac arrest: a prospective observational study. Medicine (Baltimore). 2019;98(6):e14496.
pubmed: 30732223
doi: 10.1097/MD.0000000000014496
Park JS, In YN, You YH, et al. Ultra-early neurologic outcome prediction of out-of-hospital cardiac arrest survivors using combined diffusion-weighted imaging findings and quantitative analysis of apparent diffusion coefficient. Resuscitation. 2020;148:39–48.
pubmed: 31931093
doi: 10.1016/j.resuscitation.2019.12.021
Jordan KG. Emergency EEG and continuous EEG monitoring in acute ischemic stroke. J Clin Neurophysiol. 2004;21(5):341–52.
pubmed: 15592008
Synek VM. EEG abnormality grades and subdivisions of prognostic importance in traumatic and anoxic coma in adults. Clin Electroencephalogr. 1988;19(3):160–6.
pubmed: 3416501
doi: 10.1177/155005948801900310
Westhall E, Rossetti AO, van Rootselaar AF, et al. Standardized EEG interpretation accurately predicts prognosis after cardiac arrest. Neurology. 2016;86(16):1482–90.
pubmed: 26865516
pmcid: 4836886
doi: 10.1212/WNL.0000000000002462
Hirsch LJ, Fong MWK, Leitinger M, et al. American Clinical Neurophysiology Society’s standardized critical care EEG terminology: 2021 version. J Clin Neurophysiol. 2021;38(1):1–29.
pubmed: 33475321
pmcid: 8135051
doi: 10.1097/WNP.0000000000000806
Westhall E, Rosen I, Rundgren M, et al. Time to epileptiform activity and EEG background recovery are independent predictors after cardiac arrest. Clin Neurophysiol. 2018;129(8):1660–8.
pubmed: 29933239
doi: 10.1016/j.clinph.2018.05.016
Hofmeijer J, Tjepkema-Cloostermans MC, van Putten MJ. Burst-suppression with identical bursts: a distinct EEG pattern with poor outcome in postanoxic coma. Clin Neurophysiol. 2014;125(5):947–54.
pubmed: 24286857
doi: 10.1016/j.clinph.2013.10.017
Muhlhofer W, Szaflarski JP. Prognostic value of EEG in patients after cardiac arrest-an updated review. Curr Neurol Neurosci Rep. 2018;18(4):16.
pubmed: 29525975
doi: 10.1007/s11910-018-0826-6
Hermans MC, Westover MB, van Putten M, Hirsch LJ, Gaspard N. Quantification of EEG reactivity in comatose patients. Clin Neurophysiol. 2016;127(1):571–80.
pubmed: 26183757
doi: 10.1016/j.clinph.2015.06.024
Westhall E, Rosen I, Rossetti AO, et al. Interrater variability of EEG interpretation in comatose cardiac arrest patients. Clin Neurophysiol. 2015;126(12):2397–404.
pubmed: 25934481
doi: 10.1016/j.clinph.2015.03.017
Admiraal MM, Horn J, Hofmeijer J, et al. EEG reactivity testing for prediction of good outcome in patients after cardiac arrest. Neurology. 2020;95(6):e653–61.
pubmed: 32651293
doi: 10.1212/WNL.0000000000009991
Zhang Y, Su YY, Haupt WF, et al. Application of electrophysiologic techniques in poor outcome prediction among patients with severe focal and diffuse ischemic brain injury. J Clin Neurophysiol. 2011;28(5):497–503.
pubmed: 21946368
doi: 10.1097/WNP.0b013e318231c852
Trinka E, Cock H, Hesdorffer D, et al. A definition and classification of status epilepticus: report of the ILAE task force on classification of status epilepticus. Epilepsia. 2015;56(10):1515–23.
pubmed: 26336950
doi: 10.1111/epi.13121
Rossetti AO, Oddo M, Liaudet L, Kaplan PW. Predictors of awakening from postanoxic status epilepticus after therapeutic hypothermia. Neurology. 2009;72(8):744–9.
pubmed: 19237704
doi: 10.1212/01.wnl.0000343006.60851.62
Rundgren M, Westhall E, Cronberg T, Rosen I, Friberg H. Continuous amplitude-integrated electroencephalogram predicts outcome in hypothermia-treated cardiac arrest patients. Crit Care Med. 2010;38(9):1838–44.
pubmed: 20562694
doi: 10.1097/CCM.0b013e3181eaa1e7
Glimmerveen AB, Keijzer HM, Ruijter BJ, et al. Relevance of somatosensory evoked potential amplitude after cardiac arrest. Front Neurol. 2020;11:335.
pubmed: 32425878
pmcid: 7212397
doi: 10.3389/fneur.2020.00335
Berger JR, Blum AS. Somatosensory evoked potentials. In: Blum AS, Rutkove SB, editors. The clinical neurophysiology primer. Humana Press; 2007. https://doi.org/10.1007/978-1-59745-271-7_27 .
Banoub M, Tetzlaff JE, Schubert A. Pharmacologic and physiologic influences affecting sensory evoked potentials: implications for perioperative monitoring. Anesthesiology. 2003;99(3):716–37.
pubmed: 12960558
doi: 10.1097/00000542-200309000-00029
Karunasekara N, Salib S, MacDuff A. A good outcome after absence of bilateral N20 SSEPs post-cardiac arrest. J Intensive Care Soc. 2016;17(2):168–70.
pubmed: 28979482
doi: 10.1177/1751143715616137
Celani MG, Carrai R, Cantisani TA, et al. Is there inter-observer variation in the interpretation of SSEPs in comatose cardiac arrest survivors? Further considerations following the Italian multicenter ProNeCa study. Resuscitation. 2020;155:207–10.
pubmed: 32795599
doi: 10.1016/j.resuscitation.2020.07.029
Pfeifer R, Weitzel S, Gunther A, et al. Investigation of the inter-observer variability effect on the prognostic value of somatosensory evoked potentials of the median nerve (SSEP) in cardiac arrest survivors using an SSEP classification. Resuscitation. 2013;84(10):1375–81.
pubmed: 23747958
doi: 10.1016/j.resuscitation.2013.05.016
van Soest TM, van Rootselaar AF, Admiraal MM, et al. SSEP amplitudes add information for prognostication in postanoxic coma. Resuscitation. 2021;163:172–5.
pubmed: 33848583
doi: 10.1016/j.resuscitation.2021.03.033
Markand ON, Warren C, Mallik GS, Williams CJ. Temperature-dependent hysteresis in somatosensory and auditory evoked potentials. Electroencephalogr Clin Neurophysiol. 1990;77(6):425–35.
pubmed: 1701705
doi: 10.1016/0168-5597(90)90003-V
Lang M, Welte M, Syben R, Hansen D. Effects of hypothermia on median nerve somatosensory evoked potentials during spontaneous circulation. J Neurosurg Anesthesiol. 2002;14(2):141–5.
pubmed: 11907395
doi: 10.1097/00008506-200204000-00009
Bouwes A, Doesborg PG, Laman DM, et al. Hypothermia after CPR prolongs conduction times of somatosensory evoked potentials. Neurocrit Care. 2013;19(1):25–30.
pubmed: 23702693
doi: 10.1007/s12028-013-9856-8
Markand ON, Warren C, Mallik GS, et al. Effects of hypothermia on short latency somatosensory evoked potentials in humans. Electroencephalogr Clin Neurophysiol. 1990;77(6):416–24.
pubmed: 1701704
doi: 10.1016/0168-5597(90)90002-U
Bouwes A, Binnekade JM, Zandstra DF, et al. Somatosensory evoked potentials during mild hypothermia after cardiopulmonary resuscitation. Neurology. 2009;73(18):1457–61.
pubmed: 19884573
doi: 10.1212/WNL.0b013e3181bf98f4
Scarpino M, Lolli F, Lanzo G, et al. SSEP amplitude accurately predicts both good and poor neurological outcome early after cardiac arrest; a post-hoc analysis of the ProNeCA multicentre study. Resuscitation. 2021;163:162–71.
pubmed: 33819501
doi: 10.1016/j.resuscitation.2021.03.028
Isgro MA, Bottoni P, Scatena R. Neuron-specific enolase as a biomarker: biochemical and clinical aspects. Adv Exp Med Biol. 2015;867:125–43.
pubmed: 26530364
doi: 10.1007/978-94-017-7215-0_9
Rafecas A, Baneras J, Sans-Rosello J, et al. Change in neuron specific enolase levels in out-of-hospital cardiopulmonary arrest survivors as a simple and useful tool to predict neurological prognosis. Rev Esp Cardiol (Engl Ed). 2020;73(3):232–40.
pubmed: 30935900
doi: 10.1016/j.recesp.2019.01.014
Mastroianni A, Panella R, Morelli D. Invisible hemolysis in serum samples interferes in NSE measurement. Tumori. 2020;106(1):79–81.
pubmed: 31394980
doi: 10.1177/0300891619867836
Moseby-Knappe M, Mattsson-Carlgren N, Stammet P, et al. Serum markers of brain injury can predict good neurological outcome after out-of-hospital cardiac arrest. Intensive Care Med. 2021;47(9):984–94.
pubmed: 34417831
pmcid: 8421280
doi: 10.1007/s00134-021-06481-4
Zellner T, Gartner R, Schopohl J, Angstwurm M. NSE and S-100B are not sufficiently predictive of neurologic outcome after therapeutic hypothermia for cardiac arrest. Resuscitation. 2013;84(10):1382–6.
pubmed: 23528678
doi: 10.1016/j.resuscitation.2013.03.021
Adrie C, Cariou A, Mourvillier B, et al. Predicting survival with good neurological recovery at hospital admission after successful resuscitation of out-of-hospital cardiac arrest: the OHCA score. Eur Heart J. 2006;27(23):2840–5.
pubmed: 17082207
doi: 10.1093/eurheartj/ehl335
Hunziker S, Bivens MJ, Cocchi MN, et al. International validation of the out-of-hospital cardiac arrest score in the United States. Crit Care Med. 2011;39(7):1670–4.
pubmed: 21494106
doi: 10.1097/CCM.0b013e318218a05b
Chelly J, Mpela AG, Jochmans S, et al. OHCA (Out-of-Hospital Cardiac Arrest) and CAHP (Cardiac Arrest Hospital Prognosis) scores to predict outcome after in-hospital cardiac arrest: Insight from a multicentric registry. Resuscitation. 2020;156:167–73.
pubmed: 32976962
doi: 10.1016/j.resuscitation.2020.09.021
Song HG, Park JS, You Y, et al. Using Out-of-Hospital Cardiac Arrest (OHCA) and Cardiac Arrest Hospital Prognosis (CAHP) scores with modified objective data to improve neurological prognostic performance for out-of-hospital cardiac arrest survivors. J Clin Med. 2021;10(9):1825.
pubmed: 33922191
pmcid: 8122729
doi: 10.3390/jcm10091825
Wang CH, Huang CH, Chang WT, et al. Prognostic performance of simplified out-of-hospital cardiac arrest (OHCA) and cardiac arrest hospital prognosis (CAHP) scores in an East Asian population: a prospective cohort study. Resuscitation. 2019;137:133–9.
pubmed: 30797049
doi: 10.1016/j.resuscitation.2019.02.015
Maupain C, Bougouin W, Lamhaut L, et al. The CAHP (Cardiac Arrest Hospital Prognosis) score: a tool for risk stratification after out-of-hospital cardiac arrest. Eur Heart J. 2016;37(42):3222–8.
pubmed: 26497161
doi: 10.1093/eurheartj/ehv556
Sauneuf B, Dupeyrat J, Souloy X, et al. The CAHP (cardiac arrest hospital prognosis) score: a tool for risk stratification after out-of-hospital cardiac arrest in elderly patients. Resuscitation. 2020;148:200–6.
pubmed: 31987887
doi: 10.1016/j.resuscitation.2020.01.011
Ebell, M.H., Jang, W., Shen, Y., Geocadin, R.G.Get With the Guidelines-Resuscitation, I. Development and validation of the Good Outcome Following Attempted Resuscitation (GO-FAR) score to predict neurologically intact survival after in-hospital cardiopulmonary resuscitation. JAMA Intern Med 2013;173(20):1872-8.
Piscator E, Goransson K, Bruchfeld S, et al. Predicting neurologically intact survival after in-hospital cardiac arrest-external validation of the Good Outcome Following Attempted Resuscitation score. Resuscitation. 2018;128:63–9.
pubmed: 29723607
doi: 10.1016/j.resuscitation.2018.04.035
Johnsson J, Bjornsson O, Andersson P, et al. Artificial neural networks improve early outcome prediction and risk classification in out-of-hospital cardiac arrest patients admitted to intensive care. Crit Care. 2020;24(1):474.
pubmed: 32731878
pmcid: 7394679
doi: 10.1186/s13054-020-03103-1
Kwon JM, Jeon KH, Kim HM, et al. Deep-learning-based out-of-hospital cardiac arrest prognostic system to predict clinical outcomes. Resuscitation. 2019;139:84–91.
pubmed: 30978378
doi: 10.1016/j.resuscitation.2019.04.007
Tjepkema-Cloostermans MC, da Silva Lourenco C, Ruijter BJ, et al. Outcome prediction in postanoxic coma with deep learning. Crit Care Med. 2019;47(10):1424–32.
pubmed: 31162190
doi: 10.1097/CCM.0000000000003854
Humaloja J, Ashton NJ, Skrifvars MB. Brain injury biomarkers for predicting outcome after cardiac arrest. Crit Care. 2022;26(1):81.
pubmed: 35337359
pmcid: 8957160
doi: 10.1186/s13054-022-03913-5
Tiainen M, Vaahersalo J, Skrifvars MB, et al. Surviving out-of-hospital cardiac arrest: the neurological and functional outcome and health-related quality of life one year later. Resuscitation. 2018;129:19–23.
pubmed: 29775641
doi: 10.1016/j.resuscitation.2018.05.011
Arestedt K, Israelsson J, Djukanovic I, et al. Symptom prevalence of anxiety and depression in older cardiac arrest survivors: a comparative nationwide register study. J Clin Med. 2021;10(18):4285.
pubmed: 34575396
pmcid: 8470576
doi: 10.3390/jcm10184285
Viktorisson A, Sunnerhagen KS, Johansson D, Herlitz J, Axelsson A. One-year longitudinal study of psychological distress and self-assessed health in survivors of out-of-hospital cardiac arrest. BMJ Open. 2019;9(7):e029756.
pubmed: 31272987
pmcid: 6615909
doi: 10.1136/bmjopen-2019-029756
Moulaert VR, Verbunt JA, van Heugten CM, Wade DT. Cognitive impairments in survivors of out-of-hospital cardiac arrest: a systematic review. Resuscitation. 2009;80(3):297–305.
pubmed: 19117659
doi: 10.1016/j.resuscitation.2008.10.034
Green CR, Botha JA, Tiruvoipati R. Cognitive function, quality of life and mental health in survivors of our-of-hospital cardiac arrest: a review. Anaesth Intensive Care. 2015;43(5):568–76.
pubmed: 26310406
doi: 10.1177/0310057X1504300504
Elliott VJ, Rodgers DL, Brett SJ. Systematic review of quality of life and other patient-centred outcomes after cardiac arrest survival. Resuscitation. 2011;82(3):247–56.
pubmed: 21216080
doi: 10.1016/j.resuscitation.2010.10.030
Smith K, Andrew E, Lijovic M, Nehme Z, Bernard S. Quality of life and functional outcomes 12 months after out-of-hospital cardiac arrest. Circulation. 2015;131(2):174–81.
pubmed: 25355914
doi: 10.1161/CIRCULATIONAHA.114.011200
Moulaert VRM, van Heugten CM, Gorgels TPM, Wade DT, Verbunt JA. Long-term outcome after survival of a cardiac arrest: a prospective longitudinal cohort study. Neurorehabil Neural Repair. 2017;31(6):530–9.
pubmed: 28506147
doi: 10.1177/1545968317697032
Pound GM, Jones D, Eastwood GM, et al. Long-term functional outcome and quality of life following in-hospital cardiac arrest: a longitudinal cohort study. Crit Care Med. 2022;50(1):61–71.
pubmed: 34166283
doi: 10.1097/CCM.0000000000005118