Characterization of Effects of Compressed Sensing on High Spectral and Spatial Resolution (HiSS) MRI with Comparison to SENSE.

compressed sensing (CS) dispersion vs. absorption (DISPA) analysis high spectral and spatial resolution (HiSS) MRI image quality modulation transfer function spectral lineshape

Journal

Tomography (Ann Arbor, Mich.)
ISSN: 2379-139X
Titre abrégé: Tomography
Pays: Switzerland
ID NLM: 101671170

Informations de publication

Date de publication:
19 03 2023
Historique:
received: 24 02 2023
revised: 15 03 2023
accepted: 15 03 2023
entrez: 24 3 2023
pubmed: 25 3 2023
medline: 28 3 2023
Statut: epublish

Résumé

High Spectral and Spatial resolution (HiSS) MRI shows high diagnostic performance in the breast. Acceleration methods based on k-space undersampling could allow stronger T2*-based image contrast and/or higher spectral resolution, potentially increasing diagnostic performance. An agar/oil phantom was prepared with water-fat boundaries perpendicular to the readout and phase encoding directions in a breast coil. HiSS MRI was acquired at 3T, at sensitivity encoding (SENSE) acceleration factors R of up to 10, and the R = 1 dataset was used to simulate corresponding compressed sensing (CS) accelerations. Image quality was evaluated by quantifying noise and artifact levels. Effective spatial resolution was determined via modulation transfer function analysis. Dispersion vs. absorption (DISPA) analysis and full width at half maximum (FWHM) quantified spectral lineshape changes. Noise levels remained constant with R for CS but amplified with SENSE. SENSE preserved the spatial resolution of HiSS MRI, while CS reduced it in the phase encoding direction. SENSE showed no effect on FWHM or DISPA markers, while CS increased FWHM. Thus, CS might perform better in noise-limited or geometrically constrained applications, but in geometric configurations specific to breast MRI, spectral analysis might be compromised, decreasing the diagnostic performance of HiSS MRI.

Identifiants

pubmed: 36961014
pii: tomography9020055
doi: 10.3390/tomography9020055
pmc: PMC10037569
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

693-705

Subventions

Organisme : NCI NIH HHS
ID : R01 CA167785
Pays : United States

Références

Phys Eng Sci Med. 2022 Jun;45(2):487-496
pubmed: 35230638
Invest Radiol. 2021 Oct 1;56(10):629-636
pubmed: 34494995
Magn Reson Med. 1984 Sep;1(3):370-86
pubmed: 6571566
Magn Reson Med. 1999 Nov;42(5):952-62
pubmed: 10542355
Eur J Radiol. 2003 Apr;46(1):3-27
pubmed: 12648798
BMC Med Imaging. 2020 Jun 9;20(1):61
pubmed: 32517657
Acad Radiol. 2011 Dec;18(12):1467-74
pubmed: 21962476
Acad Radiol. 2002 Aug;9 Suppl 2:S352-4
pubmed: 12188272
J Magn Reson Imaging. 2014 Jan;39(1):59-67
pubmed: 24023011
Magn Reson Med. 2013 Jun;69(6):1665-9
pubmed: 22847672
Magn Reson Med. 2007 Dec;58(6):1182-95
pubmed: 17969013
Crit Rev Biomed Eng. 2013;41(3):183-204
pubmed: 24579643
Pol J Radiol. 2021 May 10;86:e277-e286
pubmed: 34136045
Magn Reson Med. 2000 May;43(5):682-90
pubmed: 10800033
J Magn Reson Imaging. 2021 May;53(5):1594-1605
pubmed: 33382171
Magn Reson Med. 2007 Jun;57(6):1131-9
pubmed: 17534913
Phys Med Biol. 2009 Oct 7;54(19):5767-79
pubmed: 19741276
Med Phys. 1994 Mar;21(3):483-9
pubmed: 8208224
Magn Reson Med Sci. 2007;6(1):21-7
pubmed: 17510539
J Magn Reson Imaging. 2003 Oct;18(4):442-8
pubmed: 14508781
J Magn Reson Imaging. 2017 Apr;45(4):966-987
pubmed: 27981664
Magn Reson Imaging. 2010 Jan;28(1):16-21
pubmed: 19628350
J Med Imaging (Bellingham). 2015 Apr;2(2):024502
pubmed: 26158106
J Med Imaging (Bellingham). 2016 Oct;3(4):044507
pubmed: 28042590
Magn Reson Med. 2009 Feb;61(2):291-8
pubmed: 19165878
Phys Med Biol. 2008 Sep 7;53(17):4509-22
pubmed: 18677038
Magn Reson Med. 2010 Jun;63(6):1557-63
pubmed: 20512859
Eur Radiol. 2021 Jul;31(7):4860-4871
pubmed: 33443601
AJR Am J Roentgenol. 2006 Jan;186(1):30-7
pubmed: 16357373
Eur Radiol. 2017 Feb;27(2):562-569
pubmed: 27193776
Magn Reson Med. 1985 Oct;2(5):479-89
pubmed: 4094561
BMC Med Imaging. 2022 Sep 29;22(1):171
pubmed: 36175878
NMR Biomed. 2013 May;26(5):569-77
pubmed: 23165988
Breast Cancer Res Treat. 2019 Oct;177(3):629-639
pubmed: 31325074
Magn Reson Med. 2021 Sep;86(3):1505-1513
pubmed: 33963782
Med Phys. 2014 Jan;41(1):012303
pubmed: 24387524
Eur Radiol. 2011 Sep;21(9):2011-9
pubmed: 21562806
Radiology. 2002 Aug;224(2):577-85
pubmed: 12147859
Magn Reson Med. 2010 Sep;64(3):767-76
pubmed: 20535813
J Magn Reson Imaging. 2006 Dec;24(6):1311-5
pubmed: 17096393
Magn Reson Med. 2004 Jul;52(1):193-6
pubmed: 15236386
J Magn Reson Imaging. 2017 Nov;46(5):1341-1348
pubmed: 28263425
NMR Biomed. 2021 May;34(5):e4314
pubmed: 32399974

Auteurs

Milica Medved (M)

Department of Radiology, University of Chicago, Chicago, IL 60637, USA.

Marco Vicari (M)

Fraunhofer Institute for Digital Medicine MEVIS, 28359 Bremen, Germany.
Philips Research, 5656 AE Eindhoven, The Netherlands.

Gregory S Karczmar (GS)

Department of Radiology, University of Chicago, Chicago, IL 60637, USA.

Articles similaires

Humans Ketamine Propofol Pulmonary Atelectasis Female
Humans Magnetic Resonance Imaging Phantoms, Imaging Infant, Newborn Signal-To-Noise Ratio
1.00
Humans Magnetic Resonance Imaging Brain Infant, Newborn Infant, Premature

Defining multilevel developmental cervical spinal stenosis using MRI.

Prudence W H Cheung, Justin H M Leung, Vivien W Y Lee et al.
1.00
Humans Male Female Magnetic Resonance Imaging Middle Aged

Classifications MeSH