Studying the morphology, composition and function of the photoreceptor primary cilium in zebrafish.
Cilia
Correlative light and electron microscopy (CLEM)
Immunohistochemistry
Outer segment isolation
Plastic sections
Transmission electron microscopy (TEM)
Zebrafish
Journal
Methods in cell biology
ISSN: 0091-679X
Titre abrégé: Methods Cell Biol
Pays: United States
ID NLM: 0373334
Informations de publication
Date de publication:
2023
2023
Historique:
medline:
28
3
2023
entrez:
26
3
2023
pubmed:
27
3
2023
Statut:
ppublish
Résumé
Vision is one of our dominant senses and its loss has a profound impact on the life quality of affected individuals. Highly specialized neurons in the retina called photoreceptors convert photons into neuronal responses. This conversion of photons is mediated by light sensitive opsin proteins, which are found in the outer segments of the photoreceptors. These outer segments are highly specialized primary cilia, explaining why retinal dystrophy is a key feature of ciliopathies, a group of diseases resulting from abnormal and dysfunctional cilia. Therefore, research on ciliopathies often includes the analysis of the retina with special focus on the photoreceptor and its outer segment. In the last decade, the zebrafish has emerged as an excellent model organism to study human diseases, in particular with respect to the retina. The cone-rich retina of zebrafish resembles the fovea of the human macula and thus represents an excellent model to study human retinal diseases. Here we give detailed guidance on how to analyze the morphological and ultra-structural integrity of photoreceptors in the zebrafish using various histological and imaging techniques. We further describe how to conduct functional analysis of the retina by electroretinography and how to prepare isolated outer segment fractions for different -omic approaches. These different methods allow a comprehensive analysis of photoreceptors, helping to enhance our understanding of the molecular and structural basis of ciliary function in health and of the consequences of its dysfunction in disease.
Identifiants
pubmed: 36967148
pii: S0091-679X(22)00168-6
doi: 10.1016/bs.mcb.2022.10.004
pii:
doi:
Substances chimiques
Zebrafish Proteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
97-128Informations de copyright
Copyright © 2023 Elsevier Inc. All rights reserved.