In-line monitoring of Bordetella pertussis cultivation using fluorescence spectroscopy.
Bioprocess monitoring
Bordetella pertussis
Fluorescence spectroscopy
PLS regression
Journal
Bioprocess and biosystems engineering
ISSN: 1615-7605
Titre abrégé: Bioprocess Biosyst Eng
Pays: Germany
ID NLM: 101088505
Informations de publication
Date de publication:
Jun 2023
Jun 2023
Historique:
received:
29
08
2022
accepted:
28
02
2023
medline:
5
5
2023
pubmed:
28
3
2023
entrez:
27
3
2023
Statut:
ppublish
Résumé
Fluorescence spectroscopy is a non-invasive and highly sensitive method for bioprocess monitoring. The use of fluorescence spectroscopy is not very well established in the industry for in-line monitoring. In the present work, a 2-D fluorometer with two excitation lights (365 and 405 nm) and emission spectra in the range of 350-850 nm were used for in-line monitoring of two strains of Bordetella pertussis cultivation operated in batch and fed batch. A Partial Least Squares (PLS) based regression model was used for the estimation of cell biomass, amino acids (glutamate and proline) and antigen (Pertactin) produced. It was observed that accurate predictions were achieved when models were calibrated separately for each cell strain and nutrient media formulation. Also, prediction accuracy was improved when dissolved oxygen, agitation and culture volume are added as additional features in the regression model. The proposed approach of combining in-line fluorescence and other online measurements is shown to have good potential for in-line monitoring of bioprocesses.
Identifiants
pubmed: 36971837
doi: 10.1007/s00449-023-02857-6
pii: 10.1007/s00449-023-02857-6
doi:
Substances chimiques
Amino Acids
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
789-802Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Agarwal P, Tamer M, Budman H (2021) Explainability: relevance based dynamic deep learning algorithm for fault detection and diagnosis in chemical processes. Comput Chem Eng 154:107467
doi: 10.1016/j.compchemeng.2021.107467
Agarwal P, Tamer M, Sahraei MH, Budman H (2019) Deep learning for classification of profit-based operating regions in industrial processes. Ind Eng Chem Res 59(6):2378–2395
doi: 10.1021/acs.iecr.9b04737
Mandenius C-F, Titchener-Hooker NJ et al (2013) Measurement, monitoring, modelling and control of bioprocesses, vol 132. Springer
doi: 10.1007/978-3-642-36838-7
Korshin GV, Li C-W, Benjamin MM (1997) Monitoring the properties of natural organic matter through UV spectroscopy: a consistent theory. Water Res 31(7):1787–1795
doi: 10.1016/S0043-1354(97)00006-7
Kara S, Mueller J, Liese A (2011) Online analysis methods for monitoring of bioprocesses. Chim Oggi 29:38–41
Long DA (1977) Raman spectroscopy. New York 1
Royer CA (1995) Fluorescence spectroscopy. Protein Stabil Fold 65–89
Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2(1–3):37–52
doi: 10.1016/0169-7439(87)80084-9
Höskuldsson A (1988) Pls regression methods. J Chemometrics 2(3):211–228
doi: 10.1002/cem.1180020306
Braspenning PJ, Thuijsman F, Weijters AJMM (1995) Artificial neural networks: an introduction to ANN theory and practice, vol 931. Springer Science & Business Media
Yi L et al (2016) Chemometric methods in data processing of mass spectrometry-based metabolomics: a review. Anal Chim Acta 914:17–34
doi: 10.1016/j.aca.2016.02.001
pubmed: 26965324
Abbas O, Pissard A, Baeten V (2020) In near-infrared, mid-infrared, and Raman spectroscopy. Elsevier, pp 77–134
Haas J, Mizaikoff B (2016) Advances in mid-infrared spectroscopy for chemical analysis. Annu Rev Anal Chem 9:45–68
doi: 10.1146/annurev-anchem-071015-041507
Fazenda ML et al (2013) Towards better understanding of an industrial cell factory: investigating the feasibility of real-time metabolic flux analysis in pichia pastoris. Microb Cell Fact 12(1):1–14
doi: 10.1186/1475-2859-12-51
Graves P, Gardiner D (1989) Practical Raman spectroscopy. Springer
Shaw AD et al (1999) Noninvasive, on-line monitoring of the biotransformation by yeast of glucose to ethanol using dispersive Raman spectroscopy and chemometrics. Appl Spectrosc 53(11):1419–1428
doi: 10.1366/0003702991945777
Faassen SM, Hitzmann B (2015) Fluorescence spectroscopy and chemometric modeling for bioprocess monitoring. Sensors 15(5):10271–10291
doi: 10.3390/s150510271
pubmed: 25942644
pmcid: 4481931
Ödman P, Johansen CL, Olsson L, Gernaey KV, Lantz AE (2010) Sensor combination and chemometric variable selection for online monitoring of streptomyces coelicolor fed-batch cultivations. Appl Microbiol Biotechnol 86(6):1745–1759
doi: 10.1007/s00253-009-2412-y
pubmed: 20135117
Teixeira AP et al (2009) In situ 2d fluorometry and chemometric monitoring of mammalian cell cultures. Biotechnol Bioeng 102(4):1098–1106
doi: 10.1002/bit.22125
pubmed: 18853411
Teixeira AP, Duarte TM, Carrondo M, Alves PM (2011) Synchronous fluorescence spectroscopy as a novel tool to enable pat applications in bioprocesses. Biotechnol Bioeng 108(8):1852–1861
doi: 10.1002/bit.23131
pubmed: 21391211
Graf A, Claßen J, Solle D, Hitzmann B, Rebner K, Hoehse M (2019) A novel led-based 2d-fluorescence spectroscopy system for in-line monitoring of Chinese hamster ovary cell cultivations-part I. Eng Life Sci 19(5):352–362
doi: 10.1002/elsc.201800149
pubmed: 32625014
pmcid: 6999564
Karakach TK, Dachon A, Choi J, Miguez C, Masson M, Tartakovsky B (2019) Fluorescence-based real time monitoring and diagnostics of recombinant Pichia pastoris cultivations in a bioreactor. Biotechnol Prog 35(2):e2761
doi: 10.1002/btpr.2761
pubmed: 30507028
Hu S (2007) Akaike information criterion. Center Res Sci Comput 93:42
Cavanaugh JE, Neath AA (2019) The Akaike information criterion: background, derivation, properties, application, interpretation, and refinements. Wiley Interdisciplinary Rev 11(3):e1460
doi: 10.1002/wics.1460
Proom H, Knight B (1955) The minimal nutritional requirements of some species in the genus bacillus. Microbiology 13(3):474–480
Blacker TS, Duchen MR (2016) Investigating mitochondrial redox state using nadh and nadph autofluorescence. Free Radical Biol Med 100:53–65
doi: 10.1016/j.freeradbiomed.2016.08.010
Ashoori M, Saedisomeolia A (2014) Riboflavin (vitamin b2) and oxidative stress: a review. Br J Nutr 111(11):1985–1991
doi: 10.1017/S0007114514000178
pubmed: 24650639
Wellen KE, Thompson CB (2010) Cellular metabolic stress: considering how cells respond to nutrient excess. Mol Cell 40(2):323–332
doi: 10.1016/j.molcel.2010.10.004
pubmed: 20965425
pmcid: 3190402