Identification of clinical factors associated with timing and duration of spontaneous regression of retinopathy of prematurity not requiring treatment.


Journal

Journal of perinatology : official journal of the California Perinatal Association
ISSN: 1476-5543
Titre abrégé: J Perinatol
Pays: United States
ID NLM: 8501884

Informations de publication

Date de publication:
06 2023
Historique:
received: 21 10 2022
accepted: 13 03 2023
revised: 01 03 2023
medline: 12 6 2023
pubmed: 28 3 2023
entrez: 27 3 2023
Statut: ppublish

Résumé

Identify clinical factors that delay or prolong spontaneous regression of retinopathy of prematurity (ROP). Secondary analysis of three prospective studies with 76 infants with ROP not requiring treatment, born ≤30 weeks postmenstrual age (PMA) and ≤1500 grams. Outcomes were PMA at greatest severity of ROP (PMA MSROP), at which regression began, at time of complete vascularization (PMA CV), and regression duration. Pearson's correlation coefficients, t-tests, or analyses of variance were calculated. Increased positive bacterial cultures, hyperglycemia, transfusion volume of platelets and red blood cells and severity of ROP were associated with later PMA MSROP. Positive bacterial cultures, maternal chorioamnionitis, and less iron deficiency were associated with later PMA CV and prolonged regression duration. Slower length gain was associated with later PMA CV. P < 0.05 for all. Preterm infants with inflammatory exposures or linear growth impairment may require longer surveillance for ROP resolution and complete vascularization.

Identifiants

pubmed: 36973383
doi: 10.1038/s41372-023-01649-w
pii: 10.1038/s41372-023-01649-w
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

702-708

Subventions

Organisme : NCATS NIH HHS
ID : UL1 TR002494
Pays : United States

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature America, Inc.

Références

Binenbaum G, Bell EF, Donohue P, Quinn G, Shaffer J, Tomlinson LA, et al. Development of modified screening criteria for retinopathy of prematurity: primary results from the postnatal growth and retinopathy of prematurity study. JAMA Ophthalmol. 2018;136:1034–40.
pubmed: 30003216 pmcid: 6142979 doi: 10.1001/jamaophthalmol.2018.2753
Khan SI, Ryu WY, Wood EH, Moshfeghi DM, Shah JK, Lambert SR. Retinopathy of prematurity treatment trends from 2003 to 2020 in the United States. Ophthalmology. 2022;129:1216–8.
pubmed: 35714734 doi: 10.1016/j.ophtha.2022.06.008
Repka MX, Palmer EA, Tung B. Involution of retinopathy of prematurity. cryotherapy for retinopathy of prematurity cooperative group. Arch Ophthalmol. 2000;118:645–9.
pubmed: 10815156 doi: 10.1001/archopht.118.5.645
Ni YQ, Huang X, Xue K, Yu J, Ruan L, Shan HD, et al. Natural involution of acute retinopathy of prematurity not requiring treatment: factors associated with the time course of involution. Invest Ophthalmol Vis Sci. 2014;55:3165–70.
pubmed: 24764065 doi: 10.1167/iovs.13-13744
Eliason KJ, Dane Osborn J, Amsel E, Richards SC. Incidence, progression, and duration of retinopathy of prematurity in Hispanic and white non-Hispanic infants. J AAPOS. 2007;11:447–51.
pubmed: 17498987 doi: 10.1016/j.jaapos.2007.02.012
Ju RH, Zhang JQ, Ke XY, Lu XH, Liang LF, Wang WJ. Spontaneous regression of retinopathy of prematurity: incidence and predictive factors. Int J Ophthalmol. 2013;6:475–80.
pubmed: 23991382 pmcid: 3755307
Yum HR, Park SH. Clinical features of premature twin babies with intersibling asymmetry of retinopathy of prematurity severity. Can J Ophthalmol. 2022;57:337–43.
pubmed: 34126060 doi: 10.1016/j.jcjo.2021.05.011
Wang L, Li M, Zhu J, Yan H, Wu L, Fan J, et al. Clinical features of spontaneous regression of retinopathy of prematurity in China: a 5-year retrospective case series. Front Med (Lausanne). 2021;8:731421.
pubmed: 34532335 doi: 10.3389/fmed.2021.731421
Wu C, Löfqvist C, Smith LE, VanderVeen DK, Hellström A, Consortium W. Importance of early postnatal weight gain for normal retinal angiogenesis in very preterm infants: a multicenter study analyzing weight velocity deviations for the prediction of retinopathy of prematurity. Arch Ophthalmol. 2012;130:992–9.
pubmed: 22491391 pmcid: 4059056 doi: 10.1001/archophthalmol.2012.243
Belfort MB, Ramel SE, Martin CR, Fichorova R, Kuban KCK, Heeren T, et al. Systemic inflammation in the first 2 weeks after birth as a determinant of physical growth outcomes in hospitalized infants with extremely low gestational age. J Pediatr. 2022;240:37–43.e1.
pubmed: 34508750 doi: 10.1016/j.jpeds.2021.09.006
Ramel SE, Demerath EW, Gray HL, Younge N, Boys C, Georgieff MK. The relationship of poor linear growth velocity with neonatal illness and two-year neurodevelopment in preterm infants. Neonatology. 2012;102:19–24.
pubmed: 22441508 doi: 10.1159/000336127
Scheurer JM, Gray HL, Demerath EW, Rao R, Ramel SE. Diminished growth and lower adiposity in hyperglycemic very low birth weight neonates at 4 months corrected age. J Perinatol. 2016;36:145–50.
pubmed: 26540246 doi: 10.1038/jp.2015.154
Ingolfsland EC, Haapala JL, Buckley LA, Demarath EW, Guiang SF, Ramel SE. Late growth and changes in body composition influence odds of developing retinopathy of prematurity among preterm infants. Nutrients. 2019;12:78.
pubmed: 31892145 pmcid: 7019301 doi: 10.3390/nu12010078
Morris EE, Miller NC, Marka NA, Super JL, Nagel EM, Gonzalez JD, et al. Randomized trial of early enhanced parenteral nutrition and later neurodevelopment in preterm infants. Nutrients. 2022;14:3890.
pubmed: 36235546 pmcid: 9570539 doi: 10.3390/nu14193890
Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001;163:1723–9.
pubmed: 11401896 doi: 10.1164/ajrccm.163.7.2011060
Fierson WM, Ophthalmology AAOPSo, OPHTHALMOLOGY AAO, STRABISMUS AAFPOA, ORTHOPTISTS AAOC. Screening examination of premature infants for retinopathy of prematurity. Pediatrics. 2018;142:e20183061.
pubmed: 30478242 doi: 10.1542/peds.2018-3061
Good WV, Hardy RJ, Dobson V, Palmer EA, Phelps DL, Quintos M, et al. The incidence and course of retinopathy of prematurity: findings from the early treatment for retinopathy of prematurity study. Pediatrics. 2005;116:15–23.
pubmed: 15995025 doi: 10.1542/peds.2004-1413
Good WV, Group ETfRoPC. Final results of the Early Treatment for Retinopathy of Prematurity (ETROP) randomized trial. Trans Am Ophthalmol Soc. 2004;102:233–48. discussion 48-50
pubmed: 15747762 pmcid: 1280104
Quinn GE, Ying GS, Bell EF, Donohue PK, Morrison D, Tomlinson LA, et al. Incidence and early course of retinopathy of prematurity: secondary analysis of the postnatal growth and retinopathy of prematurity (G-ROP) study. JAMA Ophthalmol. 2018;136:1383–9.
pubmed: 30326046 pmcid: 6583045 doi: 10.1001/jamaophthalmol.2018.4290
Wang X, Tang K, Chen L, Cheng S, Xu H. Association between sepsis and retinopathy of prematurity: a systematic review and meta-analysis. BMJ Open. 2019;9:e025440.
pubmed: 31129577 pmcid: 6537987 doi: 10.1136/bmjopen-2018-025440
Darlow BA, Hutchinson JL, Henderson-Smart DJ, Donoghue DA, Simpson JM, Evans NJ, et al. Prenatal risk factors for severe retinopathy of prematurity among very preterm infants of the Australian and New Zealand Neonatal Network. Pediatrics. 2005;115:990–6.
pubmed: 15805375 doi: 10.1542/peds.2004-1309
Brooks SE, Marcus DM, Gillis D, Pirie E, Johnson MH, Bhatia J. The effect of blood transfusion protocol on retinopathy of prematurity: a prospective, randomized study. Pediatrics. 1999;104:514–8.
pubmed: 10469778 doi: 10.1542/peds.104.3.514
Satrom KM, Ennis K, Sweis BM, Matveeva TM, Chen J, Hanson L, et al. Neonatal hyperglycemia induces CXCL10/CXCR3 signaling and microglial activation and impairs long-term synaptogenesis in the hippocampus and alters behavior in rats. J Neuroinflammation. 2018;15:82.
pubmed: 29544513 pmcid: 5856387 doi: 10.1186/s12974-018-1121-9
Sun Q, Li J, Gao F. New insights into insulin: The anti-inflammatory effect and its clinical relevance. World J Diabetes. 2014;5:89–96.
pubmed: 24765237 pmcid: 3992527 doi: 10.4239/wjd.v5.i2.89
Goldstein GP, Leonard SA, Kan P, Koo EB, Lee HC, Carmichael SL. Prenatal and postnatal inflammation-related risk factors for retinopathy of prematurity. J Perinatol. 2019;39:964–73.
pubmed: 30932029 pmcid: 6592770 doi: 10.1038/s41372-019-0357-2
Jiang S, Yang Z, Shan R, Zhang Y, Yan W, Yang Y, et al. Neonatal outcomes following culture-negative late-onset sepsis among preterm infants. Pediatr Infect Dis J. 2020;39:232–8.
pubmed: 32032307 doi: 10.1097/INF.0000000000002558
Kim CY, Jung E, Kim EN, Kim CJ, Lee JY, Hwang JH, et al. Chronic placental inflammation as a risk factor of severe retinopathy of prematurity. J Pathol Transl Med. 2018;52:290–7.
pubmed: 30008195 pmcid: 6166017 doi: 10.4132/jptm.2018.07.09
Lynch AM, Berning AA, Thevarajah TS, Wagner BD, Post MD, McCourt EA, et al. The role of the maternal and fetal inflammatory response in retinopathy of prematurity. Am J Reprod Immunol. 2018;80:e12986.
pubmed: 29797537 doi: 10.1111/aji.12986
Pfister KM, Ramel SE. Linear growth and neurodevelopmental outcomes. Clin Perinatol. 2014;41:309–21.
pubmed: 24873834 doi: 10.1016/j.clp.2014.02.004
Belfort MB, Rifas-Shiman SL, Sullivan T, Collins CT, McPhee AJ, Ryan P, et al. Infant growth before and after term: effects on neurodevelopment in preterm infants. Pediatrics. 2011;128:e899–906.
pubmed: 21949135 pmcid: 3182845 doi: 10.1542/peds.2011-0282
Belfort MB, Rifas-Shiman SL, Kleinman KP, Guthrie LB, Bellinger DC, Taveras EM, et al. Infant feeding and childhood cognition at ages 3 and 7 years: Effects of breastfeeding duration and exclusivity. JAMA Pediatr. 2013;167:836–44.
pubmed: 23896931 pmcid: 3998659 doi: 10.1001/jamapediatrics.2013.455
Latal-Hajnal B, von Siebenthal K, Kovari H, Bucher HU, Largo RH. Postnatal growth in VLBW infants: significant association with neurodevelopmental outcome. J Pediatr. 2003;143:163–70.
pubmed: 12970627 doi: 10.1067/S0022-3476(03)00243-9
Silveira RC, Fortes Filho JB, Procianoy RS. Assessment of the contribution of cytokine plasma levels to detect retinopathy of prematurity in very low birth weight infants. Invest Ophthalmol Vis Sci. 2011;52:1297–301.
pubmed: 21071735 doi: 10.1167/iovs.10-6279
Cohen T, Nahari D, Cerem LW, Neufeld G, Levi BZ. Interleukin 6 induces the expression of vascular endothelial growth factor. J Biol Chem. 1996;271:736–41.
pubmed: 8557680 doi: 10.1074/jbc.271.2.736
Lee J, Dammann O. Perinatal infection, inflammation, and retinopathy of prematurity. Semin Fetal Neonatal Med. 2012;17:26–9.
pubmed: 21903492 doi: 10.1016/j.siny.2011.08.007
Rao R, Georgieff MK. Perinatal aspects of iron metabolism. Acta Paediatr Suppl. 2002;91:124–9.
pubmed: 12477276 doi: 10.1111/j.1651-2227.2002.tb02917.x
Fortes Filho JB, Bonomo PP, Maia M, Procianoy RS. Weight gain measured at 6 weeks after birth as a predictor for severe retinopathy of prematurity: study with 317 very low birth weight preterm babies. Graefes Arch Clin Exp Ophthalmol. 2009;247:831–6.
pubmed: 19052770 doi: 10.1007/s00417-008-1012-3
Lundgren P, Stoltz Sjöström E, Domellöf M, Källen K, Holmström G, Hård AL, et al. WINROP identifies severe retinopathy of prematurity at an early stage in a nation-based cohort of extremely preterm infants. PLoS One. 2013;8:e73256.
pubmed: 24069180 pmcid: 3771982 doi: 10.1371/journal.pone.0073256
Arthur CM, Nalbant D, Feldman HA, Saeedi BJ, Matthews J, Robinson BS, et al. Anemia induces gut inflammation and injury in an animal model of preterm infants. Transfusion. 2019;59:1233–45.
pubmed: 30897226 pmcid: 6525338
Singh G, Wallin DJ, Abrahante Lloréns JE, Tran PV, Feldman HA, Georgieff MK, et al. Dose- and sex-dependent effects of phlebotomy-induced anemia on the neonatal mouse hippocampal transcriptome. Pediatr Res. 2022;92:712–20.
pubmed: 34775474 pmcid: 9098692 doi: 10.1038/s41390-021-01832-9
Cao JH, Wagner BD, McCourt EA, Cerda A, Sillau S, Palestine A, et al. The Colorado-retinopathy of prematurity model (CO-ROP): postnatal weight gain screening algorithm. J AAPOS. 2016;20:19–24.
pubmed: 26917066 doi: 10.1016/j.jaapos.2015.10.017
Nagurney JT, Brown DF, Sane S, Weiner JB, Wang AC, Chang Y. The accuracy and completeness of data collected by prospective and retrospective methods. Acad Emerg Med. 2005;12:884–95.
pubmed: 16141025 doi: 10.1197/j.aem.2005.04.021

Auteurs

Jamee Schoephoerster (J)

University of Minnesota Medical School, Minneapolis, MN, USA.

Sydney Roston (S)

University of Minnesota Medical School, Minneapolis, MN, USA.

Scott Lunos (S)

Biostatistical Design and Analysis Center, Clinical and Translational Science Institute, University of Minnesota, Minneapolis, MN, USA.

Sara E Ramel (SE)

Department of Pediatrics, Division of Neonatology, University of Minnesota, Minneapolis, MN, USA.

Jill Anderson (J)

Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA.

Michael K Georgieff (MK)

Department of Pediatrics, Division of Neonatology, University of Minnesota, Minneapolis, MN, USA.

Ellen C Ingolfsland (EC)

Department of Pediatrics, Division of Neonatology, University of Minnesota, Minneapolis, MN, USA. eingolf@umn.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH