Combined targeted and untargeted high-resolution mass spectrometry analyses to investigate metabolic alterations in pompe disease.
Glycogen storage disorder
High-resolution mass spectrometry
Inborn error of metabolism
Metabolomics
Urine
Journal
Metabolomics : Official journal of the Metabolomic Society
ISSN: 1573-3890
Titre abrégé: Metabolomics
Pays: United States
ID NLM: 101274889
Informations de publication
Date de publication:
29 03 2023
29 03 2023
Historique:
received:
07
09
2022
accepted:
05
03
2023
medline:
31
3
2023
entrez:
29
3
2023
pubmed:
30
3
2023
Statut:
epublish
Résumé
Pompe disease is a rare, lysosomal disorder, characterized by intra-lysosomal glycogen accumulation due to an impaired function of α-glucosidase enzyme. The laboratory testing for Pompe is usually performed by enzyme activity, genetic test, or urine glucose tetrasaccharide (Glc4) screening by HPLC. Despite being a good preliminary marker, the Glc4 is not specific for Pompe. The purpose of the present study was to develop a simple methodology using liquid chromatography-high resolution mass spectrometry (LC-HRMS) for targeted quantitative analysis of Glc We collected 21 urine specimens from 13 Pompe disease patients and compared their metabolic signatures with 21 control specimens. Multivariate statistical analyses on the untargeted profiling data revealed Glc This study has demonstrated the potential of combined acquisition methods in LC-HRMS for Pompe disease investigation, allowing for routine determination of an established biomarker and discovery of complementary candidate biomarkers that may increase diagnostic accuracy, or improve the risk stratification of patients with disparate clinical phenotypes.
Identifiants
pubmed: 36988742
doi: 10.1007/s11306-023-01989-w
pii: 10.1007/s11306-023-01989-w
doi:
Substances chimiques
Biomarkers
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
29Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Al-Lozi, M. T., Amato, A. A., Barohn, R. J., Cupler, E. J., Kishnani, P. S., Leshner, R. T., Mozaffar, T., & Kishnani, P. S. (2009). Diagnostic criteria for late-onset (childhood and adult) Pompe disease. Muscle Nerve, 40(1), 149–160. https://doi.org/10.1002/MUS.21393
Almontashiri, N. A. M., Zha, L., Young, K., Law, T., Kellogg, M. D., Bodamer, O. A., & Peake, R. W. A. (2020). Clinical validation of targeted and untargeted Metabolomics Testing for Genetic Disorders: A 3 year comparative study. Scientific Reports, 10(1), 9382. https://doi.org/10.1038/s41598-020-66401-2 .
doi: 10.1038/s41598-020-66401-2
pubmed: 32523032
pmcid: 7287104
An, Y., Young, S. P., Hillman, S. L., Van Hove, J. L., Chen, Y. T., & Millington, D. S. (2000). Liquid chromatographic assay for a glucose tetrasaccharide, a putative biomarker for the diagnosis of pompe disease. Analytical Biochemistry, 287(1), 136–143. https://doi.org/10.1006/abio.2000.4838 .
doi: 10.1006/abio.2000.4838
pubmed: 11078593
Bodamer, O. A., Scott, C. R., & Giugliani, R. (2017). Newborn screening for pompe disease. Pediatrics, 140(Suppl 1), S4–S13. https://doi.org/10.1542/peds.2016-0280C
Broomfield, A., Fletcher, J., Hensman, P., Wright, R., Prunty, H., Pavaine, J., & Jones, S. A. (2018). Rapidly Progressive White Matter involvement in early childhood: The expanding phenotype of Infantile Onset Pompe? Journal of Inherited Metabolic Disease Reports, 39, 55–62. https://doi.org/10.1007/8904_2017_46 .
doi: 10.1007/8904_2017_46
Burrow, T. A., Bailey, L. A., Kinnett, D. G., & Hopkin, R. J. (2010). Acute progression of neuromuscular findings in infantile pompe disease. Pediatric Neurology, 42(6), 455–458. https://doi.org/10.1016/j.pediatrneurol.2010.02.006 .
doi: 10.1016/j.pediatrneurol.2010.02.006
pubmed: 20472203
Casado, M., Ferrer-López, I., Ruiz-Sala, P., Pérez-Cerdá, C., & Artuch, R. (2017). Urine oligosaccharide tests for the diagnosis of oligosaccharidoses. Reviews in Analytical Chemistry. https://doi.org/10.1515/REVAC-2016
doi: 10.1515/REVAC-2016
Chamoles, N. A., Niizawa, G., Blanco, M., Gaggioli, D., & Casentini, C. (2004). Glycogen storage disease type II: Enzymatic screening in dried blood spots on filter paper. Clinica Chimica Acta, 347(1–2), 97–102. https://doi.org/10.1016/j.cccn.2004.04.009 .
doi: 10.1016/j.cccn.2004.04.009
Chasson, A. L., Grady, H. J., & Stanley, M. A. (1960). Determination of creatinine by means of automatic chemical analysis. Technical bulletin of the Registry of Medical Technologists, 30, 207–212.
pubmed: 13692569
Chien, Y. H., Goldstein, J. L., Hwu, W. L., Smith, P. B., Lee, N. C., Chiang, S. C., Tolun, A. A., Zhang, H., Vaisnins, A. E., Millington, D. S., Kishnani, P. S., & Young, S. P. (2015). Baseline urinary glucose tetrasaccharide concentrations in patients with infantile- and late-onset pompe Disease identified by Newborn Screening. Journal of Inherited Metabolic Disease Reports, 19, 67. https://doi.org/10.1007/8904_2014_366 .
doi: 10.1007/8904_2014_366
Chien, Y. H., Hwu, W. L., & Lee, N. C. (2013). Pompe disease: Early diagnosis and early treatment make a difference. Pediatrics and Neonatology, 54(4), 219–227. https://doi.org/10.1016/j.pedneo.2013.03.009 .
doi: 10.1016/j.pedneo.2013.03.009
pubmed: 23632029
Chien, Y. H., Lee, N. C., Peng, S. F., & Hwu, W. L. (2006). Brain development in infantile-onset pompe disease treated by enzyme replacement therapy. Pediatric Research, 60(3), 349–352. https://doi.org/10.1203/01.pdr.0000233014.84318.4e .
doi: 10.1203/01.pdr.0000233014.84318.4e
pubmed: 16857770
Coene, K. L. M., Kluijtmans, L. A. J., van der Heeft, E., Engelke, U. F. H., de Boer, S., Hoegen, B., Kwast, H. J. T., van de Vorst, M., Huigen, M. C. D. G., Keularts, I. M. L. W., Schreuder, M. F., van Karnebeek, C. D. M., Wortmann, S. B., de Vries, M. C., Janssen, M. C. H., Gilissen, C., Engel, J., & Wevers, R. A. (2018). Next-generation metabolic screening: Targeted and untargeted metabolomics for the diagnosis of inborn errors of metabolism in individual patients. Journal of Inherited Metabolic Disease, 41(3), 337–353. https://doi.org/10.1007/S10545-017-0131-6 .
doi: 10.1007/S10545-017-0131-6
pubmed: 29453510
pmcid: 5959972
Dasouki M., Jawdat O., Almadhoun O., Pasnoor M., McVey A. L., Abuzinadah A., Herbelin L., Barohn R. J., & Dimachkie M. M. (2014). Pompe disease: Literature review and case series. Neurologic Clinics, 32(3), 751–776. https://doi.org/10.1016/J.NCL.2014.04.010
Ebbink, B. J., Poelman, E., Aarsen, F. K., Plug, I., Régal, L., Muentjes, C., van der Beek, N. A. M. E., Lequin, M. H., van der Ploeg, A. T., & van den Hout, J. M. P. (2018). Classic infantile pompe patients approaching adulthood: A cohort study on consequences for the brain. Developmental Medicine & Child Neurology, 60(6), 579–586. https://doi.org/10.1111/dmcn.13740 .
doi: 10.1111/dmcn.13740
Ebbink, B. J., Poelman, E., Plug, I., Lequin, M. H., van Doorn, P. A., Aarsen, F. K., van der Ploeg, A. T., & van den Hout, J. M. P. (2016). Cognitive decline in classic infantile pompe disease: An underacknowledged challenge. Neurology, 86(13), 1260–1261. https://doi.org/10.1212/WNL.0000000000002523 .
doi: 10.1212/WNL.0000000000002523
pubmed: 26944269
Ficicioglu, C., Ahrens-Nicklas, R. C., Barch, J., Cuddapah, S. R., DiBoscio, B. S., DiPerna, J. C., Gordon, P. L., Henderson, N., Menello, C., Luongo, N., & Ortiz, & Xiao, D., R,. (2020). Newborn screening for pompe disease: Pennsylvania experience. International Journal of Neonatal Screening. https://doi.org/10.3390/ijns6040089
doi: 10.3390/ijns6040089
pubmed: 33202836
pmcid: 7712483
Gika, H. G., Zisi, C., Theodoridis, G., & Wilson, I. D. (2016). Protocol for quality control in metabolic profiling of biological fluids by U(H)PLC-MS. Journal of chromatography B, 1008, 15–25. https://doi.org/10.1016/j.jchromb.2015.10.045 .
doi: 10.1016/j.jchromb.2015.10.045
Goldstein, J. L., Young, S. P., Changela, M., Dickerson, G. H., Zhang, H., Dai, J., Peterson, D., Millington, D. S., Kishnani, P. S., & Bali, D. S. (2009). Screening for pompe disease using a rapid dried blood spot method: Experience of a clinical diagnostic laboratory. Muscle And Nerve, 40(1), 32–36. https://doi.org/10.1002/mus.21376 .
doi: 10.1002/mus.21376
pubmed: 19533645
Gonzalez-Riano, C., Saiz, J., Barbas, C., Bergareche, A., Huerta, J. M., Ardanaz, E., Konjevod, M., Mondragon, E., Erro, M. E., Chirlaque, M. D., Abilleira, E., Goñi-Irigoyen, F., & Amiano (2021). Prognostic biomarkers of Parkinson’s disease in the spanish EPIC cohort: A multiplatform metabolomics approach. NPJ Parkinson’s Disease, 7(1), 73. https://doi.org/10.1038/s41531-021-00216-4 .
doi: 10.1038/s41531-021-00216-4
pubmed: 34400650
pmcid: 8368017
Hagemans, M. L. C., Winkel, L. P. F., Hop, W. C. J., Reuser, A. J. J., Van Doorn, P. A., & Van der Ploeg, A. T. (2005). Disease severity in children and adults with pompe disease related to age and disease duration. Neurology, 64(12), 2139–2141. https://doi.org/10.1212/01.WNL.0000165979.46537.56 .
doi: 10.1212/01.WNL.0000165979.46537.56
pubmed: 15985590
Heiner-Fokkema, M. R., Van der Krogt, J., de Boer, F., Fokkert-Wilts, M. J., Maatman, R. G. H. J., Hoogeveen, I. J., & Derks, T. G. J. (2020). The multiple faces of urinary glucose tetrasaccharide as biomarker for patients with hepatic glycogen storage diseases. Genetics in Medicine, 22(11), 1915–1916. https://doi.org/10.1038/s41436-020-0878-2 .
doi: 10.1038/s41436-020-0878-2
pubmed: 32655139
pmcid: 7605430
Huang, R., Cathey, S., Pollard, L., & Wood, T. (2018). UPLC-MS/MS analysis of urinary free oligosaccharides for lysosomal storage diseases: Diagnosis and potential treatment monitoring. Clinical Chemistry, 64(12), 1772–1779. https://doi.org/10.1373/CLINCHEM.2018.289645 .
doi: 10.1373/CLINCHEM.2018.289645
pubmed: 30201803
Kirwan, J. A., Gika, H., Beger, R. D., Bearden, D., Dunn, W. B., Goodacre, R., Theodoridis, G., Witting, M., Li-Rong, Y., & Wilson, I. D. (2022). Quality assurance and quality control reporting in untargeted metabolic phenotyping: mQACC recommendations for analytical quality management. Metabolomics. https://doi.org/10.1007/s11306-022-01926-3
doi: 10.1007/s11306-022-01926-3
pubmed: 36181583
pmcid: 10063251
Kohler, L., Puertollano, R., & Raben, N. (2018). Pompe disease: From basic science to therapy. Neurotherapeutics, 15(4), 928–942. https://doi.org/10.1007/s13311-018-0655-y .
doi: 10.1007/s13311-018-0655-y
pubmed: 30117059
pmcid: 6277280
Kohlmeier, M. (2015). Phenylalanine. In M. Kohlmeier (Ed.), Nutrient metabolism: Structures, functions, and Genetics (2nd ed.). Cambridge: Academic Press.
Li, Y., Scott, C. R., Chamoles, N. A., Ghavami, A., Pinto, B. M., Turecek, F., & Gelb, M. H. (2004). Direct multiplex assay of lysosomal enzymes in dried blood spots for newborn screening. Clinical Chemistry, 50(10), 1785–1796. https://doi.org/10.1373/CLINCHEM.2004.035907 .
doi: 10.1373/CLINCHEM.2004.035907
pubmed: 15292070
pmcid: 3428798
Liang, Q., Liu, H., Xing, H., Jiang, Y., & Zhang, A. H. (2016). UPLC-QTOF/MS based metabolomics reveals metabolic alterations associated with severe sepsis. RSC Advances, (49), 43293–43298. https://doi.org/10.1039/C6RA07514B
Liu, N., Xiao, J., Gijavanekar, C., Pappan, K. L., Glinton, K. E., Shayota, B. J., Kennedy, A. D., Sun, Q., Sutton, V. R., & Elsea, S. H. (2021). Comparison of untargeted metabolomic profiling vs traditional metabolic screening to identify inborn errors of metabolism. JAMA Network Open. https://doi.org/10.1001/JAMANETWORKOPEN.2021.1415
doi: 10.1001/JAMANETWORKOPEN.2021.1415
pubmed: 34928359
pmcid: 8689390
Luan, H., Liu, L., Tang, Z., Zhang, M., Chua, K., Song, J., Mork, V. C. T., Lin, M., & Cai, Z. (2015). Comprehensive urinary metabolomic profiling and identification of potential noninvasive marker for idiopathic Parkinson’s disease. Scientific Reports, 5, 13888. https://doi.org/10.1038/srep13888 .
doi: 10.1038/srep13888
pubmed: 26365159
pmcid: 4568456
Madhavarao, C. N., Arun, P., Moffett, J. R., Szucs, S., Surendran, S., Matalon, R., Garbern, J., Hristova, D., Johnson, A., Jiang, W., & Namboodiri, M. A. A. (2005). Defective N-acetylaspartate catabolism reduces brain acetate levels and myelin lipid synthesis in Canavan’s disease. Proceedings of the National Academy of Sciences of the United States of America, 102(14), 5221–5226. https://doi.org/10.1073/pnas.0409184102 .
doi: 10.1073/pnas.0409184102
pubmed: 15784740
pmcid: 555036
Manganelli, F., & Ruggiero, L. (2013). Clinical features of pompe disease. Acta Myologica, 32(2), 82–84.
pubmed: 24399863
pmcid: 3866902
Manwaring, V., Prunty, H., Bainbridge, K., Burke, D., Finnegan, N., Franses, R., Lam, A., Vellodi, A., & Heales, S. (2012). Urine analysis of glucose tetrasaccharide by HPLC: A useful marker for the investigation of patients with pompe and other glycogen storage diseases. Journal of Inherited Metabolic Disease, 35(2), 311–316. https://doi.org/10.1007/s10545-011-9360-2 .
doi: 10.1007/s10545-011-9360-2
pubmed: 21687968
McCall, A. L., Salemi, J., Bhanap, P., Strickland, L. M., & Elmallah, M. K. (2018). The impact of pompe disease on smooth muscle: A review. Journal of Smooth Muscle Research, 54, 100–118. https://doi.org/10.1540/jsmr.54.100 .
doi: 10.1540/jsmr.54.100
pubmed: 30787211
Miller, M. J., Kennedy, A. D., Eckhart, A. D., Burrage, L. C., Wulff, J. E., Miller, L. A. D., Milburn, M. V., Ryals, J. A., Beaudet, A. L., Sun, Q., Sutton, V. R., & Elsea, S. H. (2015). Untargeted metabolomic analysis for the clinical screening of inborn errors of metabolism. Journal of Inherited Metabolic Disease, 38(6), 1029–1039. https://doi.org/10.1007/S10545-015-9843-7 .
doi: 10.1007/S10545-015-9843-7
pubmed: 25875217
pmcid: 4626538
Moffett, J. R., Arun, P., Ariyannur, P. S., & Namboodiri, A. M. A. (2013). N-Acetylaspartate reductions in brain injury: Impact on post-injury neuroenergetics, lipid synthesis, and protein acetylation. Frontiers in Neuroenergetics, 5, 11. https://doi.org/10.3389/fnene.2013.00011 .
doi: 10.3389/fnene.2013.00011
pubmed: 24421768
pmcid: 3872778
Moffett, J. R., Ross, B., Arun, P., Madhavarao, C. N., & Namboodiri, A. M. A. (2007). N-Acetylaspartate in the CNS: From neurodiagnostics to neurobiology. Progress in Neurobiology, 81(2), 89–131. https://doi.org/10.1016/j.pneurobio.2006.12.003 .
doi: 10.1016/j.pneurobio.2006.12.003
pubmed: 17275978
pmcid: 1919520
Mordaunt, D., Cox, D., & Fuller, M. (2020). Metabolomics to improve the diagnostic efficiency of inborn errors of metabolism. International Journal of Molecular Sciences, 21(4), 1195. https://doi.org/10.3390/ijms21041195 .
doi: 10.3390/ijms21041195
pubmed: 32054038
pmcid: 7072749
Murray, A. K. (2020). The release of a soluble glycosylated protein from glycogen by recombinant lysosomal α-glucosidase (rhGAA) in vitro and its presence in serum in vivo. Biomolecules. https://doi.org/10.3390/biom10121613
doi: 10.3390/biom10121613
pubmed: 33260301
pmcid: 7761001
Namboodiri, A. M. A., Peethambaran, A., Mathew, R., Sambhu, P. A., Hershfield, J., Moffett, J. R., & Madhavarao, C. N. (2006). Canavan disease and the role of N-acetylaspartate in myelin synthesis. Molecular and Cellular Endocrinology, 252(1–2), 216–223. https://doi.org/10.1016/j.mce.2006.03.016 .
doi: 10.1016/j.mce.2006.03.016
pubmed: 16647192
O’Gorman, E., Beutner, G., Wallimann, T., & Brdiczka, D. (1996). Differential effects of creatine depletion on the regulation of enzyme activities and on creatine-stimulated mitochondrial respiration in skeletal muscle, heart, and brain. Biochimica et Biophysica Acta - Bioenergetics, 1276(2), 161–170. https://doi.org/10.1016/0005-2728(96)00074-6 .
doi: 10.1016/0005-2728(96)00074-6
Piraud, M., Pettazzoni, M., de Antonio, M., Vianey-Saban, C., Froissart, R., Chabrol, B., Young, S., & Laforêt, P. (2020). Urine glucose tetrasaccharide: A good biomarker for glycogenoses type II and III? A study of the french cohort. Molecular Genetics and Metabolism Reports, 23, 100583. https://doi.org/10.1016/j.ymgmr.2020.100583 .
doi: 10.1016/j.ymgmr.2020.100583
pubmed: 32382504
pmcid: 7200937
Rohrbach, M., Klein, A., Köhli-Wiesner, A., Veraguth, D., Scheer, I., Balmer, C., Lauener, R., & Baumgartner, M. R. (2010). CRIM-negative infantile pompe disease: 42-month treatment outcome. Journal of Inherited Metabolic Disease, 33(6), 751–757. https://doi.org/10.1007/s10545-010-9209-0 .
doi: 10.1007/s10545-010-9209-0
pubmed: 20882352
Rozaklis, T., Ramsay, S. L., Whitfield, P. D., Ranieri, E., Hopwood, J. J., & Meikle, P. J. (2002). Determination of oligosaccharides in pompe disease by electrospray ionization tandem mass spectrometry. Clinical Chemistry, 48(1), 131–139. https://doi.org/10.1093/CLINCHEM/48.1.131
doi: 10.1093/CLINCHEM/48.1.131
pubmed: 11751548
Schänzer, A., Görlach, J., Claudi, K., & Hahn, A. (2019). Severe distal muscle involvement and mild sensory neuropathy in a boy with infantile onset pompe disease treated with enzyme replacement therapy for 6 years. Neuromuscular Disorders, 29(6), 477–482. https://doi.org/10.1016/j.nmd.2019.03.004 .
doi: 10.1016/j.nmd.2019.03.004
pubmed: 31101460
Sluiter, W., Van Den Bosch, J. C., Goudriaan, D. A., Van Gelder, C. M., De Vries, J. M., Huijmans, J. G. M., Reuser, A. J. J., Van Der Ploeg, A. T., & Ruijter, G. J. G. (2012). Rapid ultraperformance liquid chromatography-tandem mass spectrometry assay for a characteristic glycogen-derived tetrasaccharide in pompe disease and other glycogen storage diseases. Clinical Chemistry, 58(7), 1139–1147. https://doi.org/10.1373/CLINCHEM.2011.178319 .
doi: 10.1373/CLINCHEM.2011.178319
pubmed: 22623745
Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., Fan, T. W. M., Fiehn, O., Goodacre, R., Griffin, J. L., Hankemeier, T., Hardy, N., Harnly, J., Higashi, R., Kopka, J., Lane, A. N., Lindon, J. C., Marriott, P., Nicholls, A. W., … Viant, M. R. (2007). Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics, 3(3), 211–221. https://doi.org/10.1007/s11306-007-0082-2
doi: 10.1007/s11306-007-0082-2
pubmed: 24039616
pmcid: 3772505
Surendran, S., & Bhatnagar, M. (2011). Upregulation of N-acetylaspartic acid induces oxidative stress to contribute in disease pathophysiology. International Journal of Neuroscience, 121(6), 305–309. https://doi.org/10.3109/00207454.2011.558225 .
doi: 10.3109/00207454.2011.558225
pubmed: 21348802
Surendran, S., & Rajasankar, S. (2010). Parkinson’s disease: Oxidative stress and therapeutic approaches. Neurological Sciences, 31(5), 531–540. https://doi.org/10.1007/s10072-010-0245-1 .
doi: 10.1007/s10072-010-0245-1
pubmed: 20221655
Surendran, S., Matalon, R., & Tyring, S. K. (2006). Upregulation of aspartoacylase activity in the duodenum of obesity induced diabetes mouse: Implications on diabetic neuropathy. Biochemical and Biophysical Research Communications, 345(3), 973–975. https://doi.org/10.1016/j.bbrc.2006.04.179 .
doi: 10.1016/j.bbrc.2006.04.179
pubmed: 16707098
Szabó, N., Kincses, Z. T., Toldi, J., & Vécsei, L. (2011). Altered tryptophan metabolism in Parkinson’s disease: A possible novel therapeutic approach. Journal of the Neurological Sciences, 310(1–2), 256–260. https://doi.org/10.1016/j.jns.2011.07.021 .
doi: 10.1016/j.jns.2011.07.021
pubmed: 21824629
Taylor, E. H., & Hommes, F. A. (1983). Effect of experimental hyperphenylalaninemia on myelin metabolism at later stages of brain development. International Journal of Neuroscience, 20(3–4), 217–227. https://doi.org/10.3109/00207458308986575 .
doi: 10.3109/00207458308986575
pubmed: 6686838
Tortorelli, S., Eckerman, J. S., Orsini, J. J., Stevens, C., Hart, J., Hall, P. L., Alexander, J. J., Gavrilov, D., Oglesbee, D., Raymond, K., Matern, D., & Rinaldo, P. (2018). Moonlighting newborn screening markers: The incidental discovery of a second-tier test for pompe disease. Genetics in Medicine, 20(8), 840–846. https://doi.org/10.1038/gim.2017.190 .
doi: 10.1038/gim.2017.190
pubmed: 29095812
Tsugawa, H., Cajka, T., Kind, T., Ma, Y., Higgins, B., Ikeda, K., Kanazawa, M., Van der Gheynst, J., Fiehn, O., & Arita, M. (2015). MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nature Methods, 12(6), 523–526. https://doi.org/10.1038/nmeth.3393 .
doi: 10.1038/nmeth.3393
pubmed: 25938372
pmcid: 4449330
Tsugawa, H., Kind, T., Nakabayashi, R., Yukihira, D., Tanaka, W., Cajka, T., Saito, K., Fiehn, O., & Arita, M. (2016). Hydrogen rearrangement rules: Computational MS/MS fragmentation and structure elucidation using MS-FINDER Software. Analytical Chemistry, 88(16), 7946–7958. https://doi.org/10.1021/acs.analchem.6b00770 .
doi: 10.1021/acs.analchem.6b00770
pubmed: 27419259
pmcid: 7063832
US Food and Drug Administration. (2018). Bioanalytical method vali-dation guidance for industry, C.f.V.M. Center for drug evaluation and research. US Food and Drug Administration.
Van Den Hout, H. M. P., Hop, W., Van Diggelen, O. P., Smeitink, J. A. M., Smit, G. P. A., Poll-The, B. T., Bakker, H. D., Loonen, M. C. B., de Klerk, J. B. C., Reuser, A. J. J., & Van Der Ploeg, A. T. (2003). The natural course of infantile pompe’s disease: 20 original cases compared with 133 cases from the literature. Pediatrics, 112(2), 332–340. https://doi.org/10.1542/peds.112.2.332 .
doi: 10.1542/peds.112.2.332
pubmed: 12897283
Wang, T. J., Larson, M. G., Vasan, R. S., Cheng, S., Rhee, E. P., McCabe, E., Lewis, G. D., Fox, C. S., Jacques, P. F., Fernandez, C., O’Donnell, C. J., Carr, S. A., Mootha, V. K., Florez, J. C., Souza, A., Melander, O., Clish, C. B., & Gerszten, R. E. (2011). Metabolite profiles and the risk of developing diabetes. Nature Methods, 17(4), 448–453. https://doi.org/10.1038/nm.2307 .
doi: 10.1038/nm.2307
Wang, Y., Sun, W., Zheng, J., Xu, C., Wang, X., Li, T., Tang, Y., & Li, Z. (2018). Urinary metabonomic study of patients with acute coronary syndrome using UPLC-QTOF/MS. Journal of Chromatography B. https://doi.org/10.1016/j.jchromb.2018.10.005
doi: 10.1016/j.jchromb.2018.10.005
Wishart, D. S., Feunang, Y. D., Marcu, A., Guo, A. C., Liang, K., Vázquez-Fresno, R., Sajed, T., Johnson, D., Li, C., Karu, N., Sayeeda, Z., Lo, E., Assempour, N., Berjanskii, M., Singhal, S., Arndt, D., Liang, Y., Badran, H., Grant, J., Serra-Cayuela, A., Liu, Y., Mandal, R., Neveu, V., Pon, A., Knox, C., Wilson, M., Manach, C., & Scalbert, A. (2018). HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Research, 46(D1), D608–D617. https://doi.org/10.1093/nar/gkx1089 .
doi: 10.1093/nar/gkx1089
pubmed: 29140435
Wyss, M., & Wallimann, T. (1994). Creatine metabolism and the consequences of creatine depletion in muscle. Molecular and Cellular Biochemistry, 133–134, 51–66. https://doi.org/10.1007/BF01267947 .
doi: 10.1007/BF01267947
pubmed: 7808465
Young, S. P., Stevens, R. D., An, Y., Chen, Y. T., & Millington, D. S. (2003). Analysis of a glucose tetrasaccharide elevated in pompe disease by stable isotope dilution-electrospray ionization tandem mass spectrometry. Analytical Biochemistry, 316(2), 175–180. https://doi.org/10.1016/S0003-2697(03)00056-3 .
doi: 10.1016/S0003-2697(03)00056-3
pubmed: 12711338