Alterations in Cholesterol and Phosphoinositides Levels in the Intracellular Cholesterol Trafficking Disorder NPC.


Journal

Advances in experimental medicine and biology
ISSN: 0065-2598
Titre abrégé: Adv Exp Med Biol
Pays: United States
ID NLM: 0121103

Informations de publication

Date de publication:
2023
Historique:
medline: 31 3 2023
entrez: 29 3 2023
pubmed: 30 3 2023
Statut: ppublish

Résumé

Lipid mistrafficking is a biochemical hallmark of Niemann-Pick Type C (NPC) disease and is classically characterized with endo/lysosomal accumulation of unesterified cholesterol due to genetic mutations in the cholesterol transporter proteins NPC1 and NPC2. Storage of this essential signaling lipid leads to a sequence of downstream events, including oxidative stress, calcium imbalance, neuroinflammation, and progressive neurodegeneration, another hallmark of NPC disease. These observations have been validated in a growing number of studies ranging from NPC cell cultures and animal models to patient specimens. In recent reports, alterations in the levels of another class of critical signaling lipids, namely phosphoinositides, have been described in NPC disease. Focusing on cholesterol and phosphoinositides, the chapter begins by reviewing the interactions of NPC proteins with cholesterol and their role in cholesterol transport. It then continues to describe the modulation of cholesterol efflux in NPC disease. The chapter concludes with a summary of findings related to the functional consequences of perturbations in phosphoinositides in this fatal disease.

Identifiants

pubmed: 36988880
doi: 10.1007/978-3-031-21547-6_5
doi:

Substances chimiques

Cholesterol 97C5T2UQ7J
Proteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

143-165

Informations de copyright

© 2023. The Author(s), under exclusive license to Springer Nature Switzerland AG.

Références

Ory DS. Niemann-Pick type C: a disorder of cellular cholesterol trafficking. Biochim Biophys Acta. 2000;1529(1-3):331–9.
pubmed: 11111100 doi: 10.1016/S1388-1981(00)00158-X
Vanier MT, Millat G. Niemann-Pick disease type C. Clin Genet. 2003;64(4):269–81.
pubmed: 12974729 doi: 10.1034/j.1399-0004.2003.00147.x
Vanier MT. Niemann-Pick disease type C. Orphanet J Rare Dis. 2010;5:16.
pubmed: 20525256 pmcid: 2902432 doi: 10.1186/1750-1172-5-16
Patterson MC, Walkley SU. Niemann-Pick disease, type C and Roscoe Brady. Mol Genet Metab. 2017;120(1-2):34–7.
pubmed: 27923544 doi: 10.1016/j.ymgme.2016.11.008
Pentchev PG, Gal AE, Booth AD, Omodeo-Sale F, Fouks J, Neumeyer BA, et al. A lysosomal storage disorder in mice characterized by a dual deficiency of sphingomyelinase and glucocerebrosidase. Biochim Biophys Acta. 1980;619(3):669–79.
pubmed: 6257302 doi: 10.1016/0005-2760(80)90116-2
Pentchev PG, Comly ME, Kruth HS, Vanier MT, Wenger DA, Patel S, et al. A defect in cholesterol esterification in Niemann-Pick disease (type C) patients. Proc Natl Acad Sci U S A. 1985;82(23):8247–51.
pubmed: 3865225 pmcid: 391480 doi: 10.1073/pnas.82.23.8247
Pentchev PG, Comly ME, Kruth HS, Patel S, Proestel M, Weintroub H. The cholesterol storage disorder of the mutant BALB/c mouse. A primary genetic lesion closely linked to defective esterification of exogenously derived cholesterol and its relationship to human type C Niemann-Pick disease. J Biol Chem. 1986;261(6):2772–7.
pubmed: 3949747 doi: 10.1016/S0021-9258(17)35852-0
Carstea ED, Morris JA, Coleman KG, Loftus SK, Zhang D, Cummings C, et al. Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science. 1997;277(5323):228–31.
pubmed: 9211849 doi: 10.1126/science.277.5323.228
Loftus SK, Morris JA, Carstea ED, Gu JZ, Cummings C, Brown A, et al. Murine model of Niemann-Pick C disease: mutation in a cholesterol homeostasis gene. Science. 1997;277(5323):232–5.
pubmed: 9211850 doi: 10.1126/science.277.5323.232
Naureckiene S, Sleat DE, Lackland H, Fensom A, Vanier MT, Wattiaux R, et al. Identification of HE1 as the second gene of Niemann-Pick C disease. Science. 2000;290(5500):2298–301.
pubmed: 11125141 doi: 10.1126/science.290.5500.2298
Friedland N, Liou HL, Lobel P, Stock AM. Structure of a cholesterol-binding protein deficient in Niemann-Pick type C2 disease. Proc Natl Acad Sci U S A. 2003;100(5):2512–7.
pubmed: 12591954 pmcid: 151372 doi: 10.1073/pnas.0437840100
Kwon HJ, Abi-Mosleh L, Wang ML, Deisenhofer J, Goldstein JL, Brown MS, et al. Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol. Cell. 2009;137(7):1213–24.
pubmed: 19563754 pmcid: 2739658 doi: 10.1016/j.cell.2009.03.049
Deffieu MS, Pfeffer SR. Niemann-Pick type C 1 function requires lumenal domain residues that mediate cholesterol-dependent NPC2 binding. Proc Natl Acad Sci U S A. 2011;108(47):18932–6.
pubmed: 22065762 pmcid: 3223457 doi: 10.1073/pnas.1110439108
Li X, Wang J, Coutavas E, Shi H, Hao Q, Blobel G. Structure of human Niemann-Pick C1 protein. Proc Natl Acad Sci U S A. 2016;113(29):8212–7.
pubmed: 27307437 pmcid: 4961162 doi: 10.1073/pnas.1607795113
Patterson MC, Mengel E, Wijburg FA, Muller A, Schwierin B, Drevon H, et al. Disease and patient characteristics in NP-C patients: findings from an international disease registry. Orphanet J Rare Dis. 2013;8:12.
pubmed: 23324478 pmcid: 3558399 doi: 10.1186/1750-1172-8-12
Vanier MT, Rodriguez-Lafrasse C, Rousson R, Gazzah N, Juge MC, Pentchev PG, et al. Type C Niemann-Pick disease: spectrum of phenotypic variation in disruption of intracellular LDL-derived cholesterol processing. Biochim Biophys Acta. 1991;1096(4):328–37.
pubmed: 2065104 doi: 10.1016/0925-4439(91)90069-L
Bolton SC, Soran V, Marfa MP, Imrie J, Gissen P, Jahnova H, et al. Clinical disease characteristics of patients with Niemann-Pick Disease Type C: findings from the International Niemann-Pick Disease Registry (INPDR). Orphanet J Rare Dis. 2022;17(1):51.
pubmed: 35164809 pmcid: 8842861 doi: 10.1186/s13023-022-02200-4
Shulman LM, David NJ, Weiner WJ. Psychosis as the initial manifestation of adult-onset Niemann-Pick disease type C. Neurology. 1995;45(9):1739–43.
pubmed: 7675237 doi: 10.1212/WNL.45.9.1739
Josephs KA, Van Gerpen MW, Van Gerpen JA. Adult onset Niemann-Pick disease type C presenting with psychosis. J Neurol Neurosurg Psychiatry. 2003;74(4):528–9.
pubmed: 12640083 pmcid: 1738356 doi: 10.1136/jnnp.74.4.528
Nadjar Y, Hutter-Moncada AL, Latour P, Ayrignac X, Kaphan E, Tranchant C, et al. Adult Niemann-Pick disease type C in France: clinical phenotypes and long-term miglustat treatment effect. Orphanet J Rare Dis. 2018;13(1):175.
pubmed: 30285904 pmcid: 6167825 doi: 10.1186/s13023-018-0913-4
Burton BK, Ellis AG, Orr B, Chatlani S, Yoon K, Shoaff JR, et al. Estimating the prevalence of Niemann-Pick disease type C (NPC) in the United States. Mol Genet Metab. 2021;134(1-2):182–7.
pubmed: 34304992 doi: 10.1016/j.ymgme.2021.06.011
Labrecque M, Touma L, Bherer C, Duquette A, Tetreault M. Estimated prevalence of Niemann-Pick type C disease in Quebec. Sci Rep. 2021;11(1):22621.
pubmed: 34799641 pmcid: 8604933 doi: 10.1038/s41598-021-01966-0
Erwood S, Bily TMI, Lequyer J, Yan J, Gulati N, Brewer RA, et al. Saturation variant interpretation using CRISPR prime editing. Nat Biotechnol. 2022;40:885–95.
pubmed: 35190686 doi: 10.1038/s41587-021-01201-1
Maetzel D, Sarkar S, Wang H, Abi-Mosleh L, Xu P, Cheng AW, et al. Genetic and chemical correction of cholesterol accumulation and impaired autophagy in hepatic and neural cells derived from Niemann-Pick Type C patient-specific iPS cells. Stem Cell Reports. 2014;2(6):866–80.
pubmed: 24936472 pmcid: 4050353 doi: 10.1016/j.stemcr.2014.03.014
Peter F, Trilck M, Rabenstein M, Rolfs A, Frech MJ. Dataset in support of the generation of Niemann-Pick disease Type C1 patient-specific iPS cell lines carrying the novel NPC1 mutation c.1180T>C or the prevalent c.3182T>C mutation - Analysis of pluripotency and neuronal differentiation. Data Brief. 2017;12:123–31.
pubmed: 28413817 pmcid: 5384887 doi: 10.1016/j.dib.2017.03.042
Pentchev PG, Boothe AD, Kruth HS, Weintroub H, Stivers J, Brady RO. A genetic storage disorder in BALB/C mice with a metabolic block in esterification of exogenous cholesterol. J Biol Chem. 1984;259(9):5784–91.
pubmed: 6325448 doi: 10.1016/S0021-9258(18)91082-3
Maue RA, Burgess RW, Wang B, Wooley CM, Seburn KL, Vanier MT, et al. A novel mouse model of Niemann-Pick type C disease carrying a D1005G-Npc1 mutation comparable to commonly observed human mutations. Hum Mol Genet. 2012;21(4):730–50.
pubmed: 22048958 doi: 10.1093/hmg/ddr505
Praggastis M, Tortelli B, Zhang J, Fujiwara H, Sidhu R, Chacko A, et al. A murine Niemann-Pick C1 I1061T knock-in model recapitulates the pathological features of the most prevalent human disease allele. J Neurosci. 2015;35(21):8091–106.
pubmed: 26019327 pmcid: 4444535 doi: 10.1523/JNEUROSCI.4173-14.2015
Huang X, Warren JT, Buchanan J, Gilbert LI, Scott MP. Drosophila Niemann-Pick type C-2 genes control sterol homeostasis and steroid biosynthesis: a model of human neurodegenerative disease. Development. 2007;134(20):3733–42.
pubmed: 17804599 doi: 10.1242/dev.004572
Sym M, Basson M, Johnson C. A model for niemann-pick type C disease in the nematode Caenorhabditis elegans. Curr Biol. 2000;10(9):527–30.
pubmed: 10801441 doi: 10.1016/S0960-9822(00)00468-1
Lowenthal AC, Cummings JF, Wenger DA, Thrall MA, Wood PA, de Lahunta A. Feline sphingolipidosis resembling Niemann-Pick disease type C. Acta Neuropathol. 1990;81(2):189–97.
pubmed: 2127982 doi: 10.1007/BF00334507
Brown DE, Thrall MA, Walkley SU, Wenger DA, Mitchell TW, Smith MO, et al. Feline Niemann-Pick disease type C. Am J Pathol. 1994;144(6):1412–5.
pubmed: 8203477 pmcid: 1887453
Yeagle PL. Modulation of membrane function by cholesterol. Biochimie. 1991;73(10):1303–10.
pubmed: 1664240 doi: 10.1016/0300-9084(91)90093-G
Yeagle PL. Cholesterol and the cell membrane. Biochim Biophys Acta. 1985;822(3-4):267–87.
pubmed: 3904832 doi: 10.1016/0304-4157(85)90011-5
Rosenhouse-Dantsker A, Mehta D, Levitan I. Regulation of ion channels by membrane lipids. Compr Physiol. 2012;2(1):31–68.
pubmed: 23728970 doi: 10.1002/cphy.c110001
Ramprasad OG, Srinivas G, Rao KS, Joshi P, Thiery JP, Dufour S, et al. Changes in cholesterol levels in the plasma membrane modulate cell signaling and regulate cell adhesion and migration on fibronectin. Cell Motil Cytoskeleton. 2007;64(3):199–216.
pubmed: 17238130 doi: 10.1002/cm.20176
Goluszko P, Nowicki B. Membrane cholesterol: a crucial molecule affecting interactions of microbial pathogens with mammalian cells. Infect Immun. 2005;73(12):7791–6.
pubmed: 16299268 pmcid: 1307024 doi: 10.1128/IAI.73.12.7791-7796.2005
Gimpl G, Burger K, Fahrenholz F. Cholesterol as modulator of receptor function. Biochemistry. 1997;36(36):10959–74.
pubmed: 9283088 doi: 10.1021/bi963138w
Quinn PJ, Wolf C. The liquid-ordered phase in membranes. Biochim Biophys Acta. 2009;1788(1):33–46.
pubmed: 18775411 doi: 10.1016/j.bbamem.2008.08.005
Sonnino S, Prinetti A. Membrane domains and the “lipid raft” concept. Curr Med Chem. 2013;20(1):4–21.
pubmed: 23150999
Rosenhouse-Dantsker A, Bukiya AN, editors. Direct mechanisms in cholesterol modulation of protein function, Adv Exp Med Biol. 1135. Springer; 2019.
Rosenhouse-Dantsker A, Bukiya AN, editors. Cholesterol modulation of protein function: sterol specificity and indirect mechanisms, Adv Exp Med Biol. 1115. Springer; 2019.
de Meyer F, Smit B. Effect of cholesterol on the structure of a phospholipid bilayer. Proc Natl Acad Sci U S A. 2009;106(10):3654–8.
pubmed: 19225105 pmcid: 2656135 doi: 10.1073/pnas.0809959106
Ohvo-Rekila H, Ramstedt B, Leppimaki P, Slotte JP. Cholesterol interactions with phospholipids in membranes. Prog Lipid Res. 2002;41(1):66–97.
pubmed: 11694269 doi: 10.1016/S0163-7827(01)00020-0
Hung WC, Lee MT, Chen FY, Huang HW. The condensing effect of cholesterol in lipid bilayers. Biophys J. 2007;92(11):3960–7.
pubmed: 17369407 pmcid: 1868968 doi: 10.1529/biophysj.106.099234
Ermilova I, Lyubartsev AP. Cholesterol in phospholipid bilayers: positions and orientations inside membranes with different unsaturation degrees. Soft Matter. 2018;15(1):78–93.
pubmed: 30520494 doi: 10.1039/C8SM01937A
Epand RF, Thomas A, Brasseur R, Vishwanathan SA, Hunter E, Epand RM. Juxtamembrane protein segments that contribute to recruitment of cholesterol into domains. Biochemistry. 2006;45(19):6105–14.
pubmed: 16681383 doi: 10.1021/bi060245+
Fantini J, Barrantes FJ. How cholesterol interacts with membrane proteins: an exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains. Front Physiol. 2013;4:31.
pubmed: 23450735 pmcid: 3584320 doi: 10.3389/fphys.2013.00031
Iaea DB, Maxfield FR. Cholesterol trafficking and distribution. Essays Biochem. 2015;57:43–55.
pubmed: 25658343 doi: 10.1042/bse0570043
Maxfield FR, Wustner D. Intracellular cholesterol transport. J Clin Invest. 2002;110(7):891–8.
pubmed: 12370264 pmcid: 151159 doi: 10.1172/JCI0216500
Liscum L, Munn NJ. Intracellular cholesterol transport. Biochim Biophys Acta. 1999;1438(1):19–37.
pubmed: 10216277 doi: 10.1016/S1388-1981(99)00043-8
Edwards PA. Cholesterol Synthesis. In: Lennarz WJ, Lane MD, editors. Encyclopedia of Biological Chemistry. New York: Elsevier; 2004. p. 451–5.
doi: 10.1016/B0-12-443710-9/00113-7
Prinz W. Cholesterol trafficking in the secretory and endocytic systems. Semin Cell Dev Biol. 2002;13(3):197–203.
pubmed: 12137740 doi: 10.1016/S1084-9521(02)00048-4
van Meer G. Caveolin, cholesterol, and lipid droplets? J Cell Biol. 2001;152(5):F29–34.
pubmed: 11238468 doi: 10.1083/jcb.152.5.F29
Soccio RE, Breslow JL. Intracellular cholesterol transport. Arterioscler Thromb Vasc Biol. 2004;24(7):1150–60.
pubmed: 15130918 doi: 10.1161/01.ATV.0000131264.66417.d5
Chu BB, Liao YC, Qi W, Xie C, Du X, Wang J, et al. Cholesterol transport through lysosome-peroxisome membrane contacts. Cell. 2015;161(2):291–306.
pubmed: 25860611 doi: 10.1016/j.cell.2015.02.019
Luo J, Jiang LY, Yang H, Song BL. Intracellular Cholesterol Transport by Sterol Transfer Proteins at Membrane Contact Sites. Trends Biochem Sci. 2019;44(3):273–92.
pubmed: 30415968 doi: 10.1016/j.tibs.2018.10.001
Lange Y, Strebel F, Steck TL. Role of the plasma membrane in cholesterol esterification in rat hepatoma cells. J Biol Chem. 1993;268(19):13838–43.
pubmed: 8314752 doi: 10.1016/S0021-9258(19)85179-7
Lange Y, Ye J, Rigney M, Steck TL. Regulation of endoplasmic reticulum cholesterol by plasma membrane cholesterol. J Lipid Res. 1999;40(12):2264–70.
pubmed: 10588952 doi: 10.1016/S0022-2275(20)32101-5
Rosenbaum AI, Maxfield FR. Niemann-Pick type C disease: molecular mechanisms and potential therapeutic approaches. J Neurochem. 2011;116(5):789–95.
pubmed: 20807315 pmcid: 3008286 doi: 10.1111/j.1471-4159.2010.06976.x
Patterson M, Vanier M, Suzuki K, Morris J, Carstea E. Neufeld E, et al. The Online Metabolic and Molecular Bases of Inherited Disease: In; 2001.
Okamura N, Kiuchi S, Tamba M, Kashima T, Hiramoto S, Baba T, et al. A porcine homolog of the major secretory protein of human epididymis, HE1, specifically binds cholesterol. Biochim Biophys Acta. 1999;1438(3):377–87.
pubmed: 10366780 doi: 10.1016/S1388-1981(99)00070-0
Ko DC, Binkley J, Sidow A, Scott MP. The integrity of a cholesterol-binding pocket in Niemann-Pick C2 protein is necessary to control lysosome cholesterol levels. Proc Natl Acad Sci U S A. 2003;100(5):2518–25.
pubmed: 12591949 pmcid: 151373 doi: 10.1073/pnas.0530027100
Xu S, Benoff B, Liou HL, Lobel P, Stock AM. Structural basis of sterol binding by NPC2, a lysosomal protein deficient in Niemann-Pick type C2 disease. J Biol Chem. 2007;282(32):23525–31.
pubmed: 17573352 doi: 10.1074/jbc.M703848200
McCauliff LA, Xu Z, Li R, Kodukula S, Ko DC, Scott MP, et al. Multiple Surface Regions on the Niemann-Pick C2 Protein Facilitate Intracellular Cholesterol Transport. J Biol Chem. 2015;290(45):27321–31.
pubmed: 26296895 pmcid: 4646368 doi: 10.1074/jbc.M115.667469
Cheruku SR, Xu Z, Dutia R, Lobel P, Storch J. Mechanism of cholesterol transfer from the Niemann-Pick type C2 protein to model membranes supports a role in lysosomal cholesterol transport. J Biol Chem. 2006;281(42):31594–604.
pubmed: 16606609 doi: 10.1016/S0021-9258(19)84073-5
Pentchev PG. Niemann-Pick C research from mouse to gene. Biochim Biophys Acta. 2004;1685(1-3):3–7.
pubmed: 15465420 doi: 10.1016/j.bbalip.2004.08.005
Sleat DE, Wiseman JA, El-Banna M, Price SM, Verot L, Shen MM, et al. Genetic evidence for nonredundant functional cooperativity between NPC1 and NPC2 in lipid transport. Proc Natl Acad Sci U S A. 2004;101(16):5886–91.
pubmed: 15071184 pmcid: 395893 doi: 10.1073/pnas.0308456101
Infante RE, Abi-Mosleh L, Radhakrishnan A, Dale JD, Brown MS, Goldstein JL. Purified NPC1 protein. I. Binding of cholesterol and oxysterols to a 1278-amino acid membrane protein. J Biol Chem. 2008;283(2):1052–63.
pubmed: 17989073 doi: 10.1074/jbc.M707943200
Infante RE, Wang ML, Radhakrishnan A, Kwon HJ, Brown MS, Goldstein JL. NPC2 facilitates bidirectional transfer of cholesterol between NPC1 and lipid bilayers, a step in cholesterol egress from lysosomes. Proc Natl Acad Sci U S A. 2008;105(40):15287–92.
pubmed: 18772377 pmcid: 2563079 doi: 10.1073/pnas.0807328105
Wang ML, Motamed M, Infante RE, Abi-Mosleh L, Kwon HJ, Brown MS, et al. Identification of surface residues on Niemann-Pick C2 essential for hydrophobic handoff of cholesterol to NPC1 in lysosomes. Cell Metab. 2010;12(2):166–73.
pubmed: 20674861 pmcid: 3034247 doi: 10.1016/j.cmet.2010.05.016
Estiu G, Khatri N, Wiest O. Computational studies of the cholesterol transport between NPC2 and the N-terminal domain of NPC1 (NPC1(NTD)). Biochemistry. 2013;52(39):6879–91.
pubmed: 24001314 doi: 10.1021/bi4005478
Elghobashi-Meinhardt N. Niemann-Pick type C disease: a QM/MM study of conformational changes in cholesterol in the NPC1(NTD) and NPC2 binding pockets. Biochemistry. 2014;53(41):6603–14.
pubmed: 25251378 doi: 10.1021/bi500548f
Gong X, Qian H, Zhou X, Wu J, Wan T, Cao P, et al. Structural Insights into the Niemann-Pick C1 (NPC1)-Mediated Cholesterol Transfer and Ebola Infection. Cell. 2016;165(6):1467–78.
pubmed: 27238017 pmcid: 7111323 doi: 10.1016/j.cell.2016.05.022
Li X, Saha P, Li J, Blobel G, Pfeffer SR. Clues to the mechanism of cholesterol transfer from the structure of NPC1 middle lumenal domain bound to NPC2. Proc Natl Acad Sci U S A. 2016;113(36):10079–84.
pubmed: 27551080 pmcid: 5018801 doi: 10.1073/pnas.1611956113
Li X, Lu F, Trinh MN, Schmiege P, Seemann J, Wang J, et al. 3.3 A structure of Niemann-Pick C1 protein reveals insights into the function of the C-terminal luminal domain in cholesterol transport. Proc Natl Acad Sci U S A. 2017;114(34):9116–21.
pubmed: 28784760 pmcid: 5576846 doi: 10.1073/pnas.1711716114
Watari H, Blanchette-Mackie EJ, Dwyer NK, Watari M, Neufeld EB, Patel S, et al. Mutations in the leucine zipper motif and sterol-sensing domain inactivate the Niemann-Pick C1 glycoprotein. J Biol Chem. 1999;274(31):21861–6.
pubmed: 10419504 doi: 10.1074/jbc.274.31.21861
Ohgami N, Ko DC, Thomas M, Scott MP, Chang CC, Chang TY. Binding between the Niemann-Pick C1 protein and a photoactivatable cholesterol analog requires a functional sterol-sensing domain. Proc Natl Acad Sci U S A. 2004;101(34):12473–8.
pubmed: 15314240 pmcid: 514655 doi: 10.1073/pnas.0405255101
Ohgane K, Karaki F, Dodo K, Hashimoto Y. Discovery of oxysterol-derived pharmacological chaperones for NPC1: implication for the existence of second sterol-binding site. Chem Biol. 2013;20(3):391–402.
pubmed: 23521797 doi: 10.1016/j.chembiol.2013.02.009
Winkler MBL, Kidmose RT, Szomek M, Thaysen K, Rawson S, Muench SP, et al. Structural Insight into Eukaryotic Sterol Transport through Niemann-Pick Type C Proteins. Cell. 2019;179(2):485–97 e18.
pubmed: 31543266 doi: 10.1016/j.cell.2019.08.038
Elghobashi-Meinhardt N. Computational tools unravel putative sterol binding sites in the lysosomal NPC1 protein. J Chem Inf Model. 2019;59(5):2432–41.
pubmed: 30942586 doi: 10.1021/acs.jcim.9b00186
Elghobashi-Meinhardt N. Cholesterol transport in wild-type NPC1 and P691S: molecular dynamics simulations reveal changes in dynamical behavior. Int J Mol Sci. 2020;21(8):2962.
pubmed: 32331453 pmcid: 7215871 doi: 10.3390/ijms21082962
Long T, Qi X, Hassan A, Liang Q, De Brabander JK, Li X. Structural basis for itraconazole-mediated NPC1 inhibition. Nat Commun. 2020;11(1):152.
pubmed: 31919352 pmcid: 6952396 doi: 10.1038/s41467-019-13917-5
Trinh MN, Lu F, Li X, Das A, Liang Q, De Brabander JK, et al. Triazoles inhibit cholesterol export from lysosomes by binding to NPC1. Proc Natl Acad Sci U S A. 2017;114(1):89–94.
pubmed: 27994139 doi: 10.1073/pnas.1619571114
Millard EE, Gale SE, Dudley N, Zhang J, Schaffer JE, Ory DS. The sterol-sensing domain of the Niemann-Pick C1 (NPC1) protein regulates trafficking of low density lipoprotein cholesterol. J Biol Chem. 2005;280(31):28581–90.
pubmed: 15908696 doi: 10.1074/jbc.M414024200
Trinh MN, Brown MS, Seemann J, Goldstein JL, Lu F. Lysosomal cholesterol export reconstituted from fragments of Niemann-Pick C1. Elife. 2018;7:e38564.
pubmed: 30047864 pmcid: 6062155 doi: 10.7554/eLife.38564
Pugach EK, Feltes M, Kaufman RJ, Ory DS, Bang AG. High-content screen for modifiers of Niemann-Pick type C disease in patient cells. Hum Mol Genet. 2018;27(12):2101–12.
pubmed: 29659804 pmcid: 5985738 doi: 10.1093/hmg/ddy117
Pipalia NH, Huang A, Ralph H, Rujoi M, Maxfield FR. Automated microscopy screening for compounds that partially revert cholesterol accumulation in Niemann-Pick C cells. J Lipid Res. 2006;47(2):284–301.
pubmed: 16288097 doi: 10.1194/jlr.M500388-JLR200
Xu M, Liu K, Swaroop M, Sun W, Dehdashti SJ, McKew JC, et al. A phenotypic compound screening assay for lysosomal storage diseases. J Biomol Screen. 2014;19(1):168–75.
pubmed: 23983233 doi: 10.1177/1087057113501197
Shioi R, Karaki F, Yoshioka H, Noguchi-Yachide T, Ishikawa M, Dodo K, et al. Image-based screen capturing misfolding status of Niemann-Pick type C1 identifies potential candidates for chaperone drugs. PLoS One. 2020;15(12):e0243746.
pubmed: 33315900 pmcid: 7735562 doi: 10.1371/journal.pone.0243746
Munkacsi AB, Chen FW, Brinkman MA, Higaki K, Gutierrez GD, Chaudhari J, et al. An “exacerbate-reverse” strategy in yeast identifies histone deacetylase inhibition as a correction for cholesterol and sphingolipid transport defects in human Niemann-Pick type C disease. J Biol Chem. 2011;286(27):23842–51.
pubmed: 21489983 pmcid: 3129166 doi: 10.1074/jbc.M111.227645
Veyron P, Mutin M, Touraine JL. Transplantation of fetal liver cells corrects accumulation of lipids in tissues and prevents fatal neuropathy in cholesterol-storage disease BALB/c mice. Transplantation. 1996;62(8):1039–45.
pubmed: 8900297 doi: 10.1097/00007890-199610270-00001
Hsu YS, Hwu WL, Huang SF, Lu MY, Chen RL, Lin DT, et al. Niemann-Pick disease type C (a cellular cholesterol lipidosis) treated by bone marrow transplantation. Bone Marrow Transplant. 1999;24(1):103–7.
pubmed: 10435744 doi: 10.1038/sj.bmt.1701826
Davidson CD, Gibson AL, Gu T, Baxter LL, Deverman BE, Beadle K, et al. Improved systemic AAV gene therapy with a neurotrophic capsid in Niemann-Pick disease type C1 mice. Life Sci Alliance. 2021;4(10)
Kurokawa Y, Osaka H, Kouga T, Jimbo E, Muramatsu K, Nakamura S, et al. Gene therapy in a mouse model of Niemann-Pick disease Type C1. Hum Gene Ther. 2021;32(11-12):589–98.
pubmed: 33256498 pmcid: 8236559 doi: 10.1089/hum.2020.175
Hughes MP, Smith DA, Morris L, Fletcher C, Colaco A, Huebecker M, et al. AAV9 intracerebroventricular gene therapy improves lifespan, locomotor function and pathology in a mouse model of Niemann-Pick type C1 disease. Hum Mol Genet. 2018;27(17):3079–98.
pubmed: 29878115 pmcid: 6097154 doi: 10.1093/hmg/ddy212
Xie C, Gong XM, Luo J, Li BL, Song BL. AAV9-NPC1 significantly ameliorates Purkinje cell death and behavioral abnormalities in mouse NPC disease. J Lipid Res. 2017;58(3):512–8.
pubmed: 28053186 pmcid: 5335581 doi: 10.1194/jlr.M071274
Chandler RJ, Williams IM, Gibson AL, Davidson CD, Incao AA, Hubbard BT, et al. Systemic AAV9 gene therapy improves the lifespan of mice with Niemann-Pick disease, type C1. Hum Mol Genet. 2017;26(1):52–64.
pubmed: 27798114
Pineda M, Jurickova K, Karimzadeh P, Kolnikova M, Malinova V, Insua JL, et al. Disease characteristics, prognosis and miglustat treatment effects on disease progression in patients with Niemann-Pick disease Type C: an international, multicenter, retrospective chart review. Orphanet J Rare Dis. 2019;14(1):32.
pubmed: 30732631 pmcid: 6367842 doi: 10.1186/s13023-019-0996-6
Zervas M, Somers KL, Thrall MA, Walkley SU. Critical role for glycosphingolipids in Niemann-Pick disease type C. Curr Biol. 2001;11(16):1283–7.
pubmed: 11525744 doi: 10.1016/S0960-9822(01)00396-7
Solomon BI, Smith AC, Sinaii N, Farhat N, King MC, Machielse L, et al. Association of miglustat with swallowing outcomes in Niemann-Pick disease, Type C1. JAMA Neurol. 2020;77(12):1564–8.
pubmed: 32897301 doi: 10.1001/jamaneurol.2020.3241
Pineda M, Walterfang M, Patterson MC. Miglustat in Niemann-Pick disease type C patients: a review. Orphanet J Rare Dis. 2018;13(1):140.
pubmed: 30111334 pmcid: 6094874 doi: 10.1186/s13023-018-0844-0
Patterson MC, Garver WS, Giugliani R, Imrie J, Jahnova H, Meaney FJ, et al. Long-term survival outcomes of patients with Niemann-Pick disease type C receiving miglustat treatment: a large retrospective observational study. J Inherit Metab Dis. 2020;43(5):1060–9.
pubmed: 32324281 pmcid: 7540716 doi: 10.1002/jimd.12245
Arguello G, Balboa E, Tapia PJ, Castro J, Yanez MJ, Mattar P, et al. Genistein activates transcription factor EB and corrects Niemann-Pick C phenotype. Int J Mol Sci. 2021;22(8)
Brown A, Patel S, Ward C, Lorenz A, Ortiz M, DuRoss A, et al. PEG-lipid micelles enable cholesterol efflux in Niemann-Pick Type C1 disease-based lysosomal storage disorder. Sci Rep. 2016;6:31750.
pubmed: 27572704 pmcid: 5004151 doi: 10.1038/srep31750
Ilnytska O, Lai K, Gorshkov K, Schultz ML, Tran BN, Jeziorek M, et al. Enrichment of NPC1-deficient cells with the lipid LBPA stimulates autophagy, improves lysosomal function, and reduces cholesterol storage. J Biol Chem. 2021;297(1):100813.
pubmed: 34023384 pmcid: 8294588 doi: 10.1016/j.jbc.2021.100813
Ilnytska O, Jeziorek M, Lai K, Altan-Bonnet N, Dobrowolski R, Storch J. Lysobisphosphatidic acid (LBPA) enrichment promotes cholesterol egress via exosomes in Niemann Pick type C1 deficient cells. Biochim Biophys Acta Mol Cell Biol Lipids. 2021;1866(6):158916.
pubmed: 33716137 pmcid: 8038758 doi: 10.1016/j.bbalip.2021.158916
Rujoi M, Pipalia NH, Maxfield FR. Cholesterol pathways affected by small molecules that decrease sterol levels in Niemann-Pick type C mutant cells. PLoS One. 2010;5(9):e12788.
pubmed: 20877719 pmcid: 2943465 doi: 10.1371/journal.pone.0012788
Rosenbaum AI, Rujoi M, Huang AY, Du H, Grabowski GA, Maxfield FR. Chemical screen to reduce sterol accumulation in Niemann-Pick C disease cells identifies novel lysosomal acid lipase inhibitors. Biochim Biophys Acta. 2009;1791(12):1155–65.
pubmed: 19699313 pmcid: 2783675 doi: 10.1016/j.bbalip.2009.08.005
Zidovetzki R, Levitan I. Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim Biophys Acta. 2007;1768(6):1311–24.
pubmed: 17493580 pmcid: 1948080 doi: 10.1016/j.bbamem.2007.03.026
Camargo F, Erickson RP, Garver WS, Hossain GS, Carbone PN, Heidenreich RA, et al. Cyclodextrins in the treatment of a mouse model of Niemann-Pick C disease. Life Sci. 2001;70(2):131–42.
pubmed: 11787939 doi: 10.1016/S0024-3205(01)01384-4
Yu W, Gong JS, Ko M, Garver WS, Yanagisawa K, Michikawa M. Altered cholesterol metabolism in Niemann-Pick type C1 mouse brains affects mitochondrial function. J Biol Chem. 2005;280(12):11731–9.
pubmed: 15644330 doi: 10.1074/jbc.M412898200
Rosenbaum AI, Zhang G, Warren JD, Maxfield FR. Endocytosis of beta-cyclodextrins is responsible for cholesterol reduction in Niemann-Pick type C mutant cells. Proc Natl Acad Sci U S A. 2010;107(12):5477–82.
pubmed: 20212119 pmcid: 2851804 doi: 10.1073/pnas.0914309107
Abi-Mosleh L, Infante RE, Radhakrishnan A, Goldstein JL, Brown MS. Cyclodextrin overcomes deficient lysosome-to-endoplasmic reticulum transport of cholesterol in Niemann-Pick type C cells. Proc Natl Acad Sci U S A. 2009;106(46):19316–21.
pubmed: 19884502 pmcid: 2780767 doi: 10.1073/pnas.0910916106
Liu B, Turley SD, Burns DK, Miller AM, Repa JJ, Dietschy JM. Reversal of defective lysosomal transport in NPC disease ameliorates liver dysfunction and neurodegeneration in the npc1-/- mouse. Proc Natl Acad Sci U S A. 2009;106(7):2377–82.
pubmed: 19171898 pmcid: 2650164 doi: 10.1073/pnas.0810895106
Davidson CD, Ali NF, Micsenyi MC, Stephney G, Renault S, Dobrenis K, et al. Chronic cyclodextrin treatment of murine Niemann-Pick C disease ameliorates neuronal cholesterol and glycosphingolipid storage and disease progression. PLoS One. 2009;4(9):e6951.
pubmed: 19750228 pmcid: 2736622 doi: 10.1371/journal.pone.0006951
Ramirez CM, Liu B, Taylor AM, Repa JJ, Burns DK, Weinberg AG, et al. Weekly cyclodextrin administration normalizes cholesterol metabolism in nearly every organ of the Niemann-Pick type C1 mouse and markedly prolongs life. Pediatr Res. 2010;68(4):309–15.
pubmed: 20581737 pmcid: 3065173 doi: 10.1203/PDR.0b013e3181ee4dd2
Aqul A, Liu B, Ramirez CM, Pieper AA, Estill SJ, Burns DK, et al. Unesterified cholesterol accumulation in late endosomes/lysosomes causes neurodegeneration and is prevented by driving cholesterol export from this compartment. J Neurosci. 2011;31(25):9404–13.
pubmed: 21697390 pmcid: 3134878 doi: 10.1523/JNEUROSCI.1317-11.2011
Taylor AM, Liu B, Mari Y, Liu B, Repa JJ. Cyclodextrin mediates rapid changes in lipid balance in Npc1-/- mice without carrying cholesterol through the bloodstream. J Lipid Res. 2012;53(11):2331–42.
pubmed: 22892156 pmcid: 3466002 doi: 10.1194/jlr.M028241
Vite CH, Bagel JH, Swain GP, Prociuk M, Sikora TU, Stein VM, et al. Intracisternal cyclodextrin prevents cerebellar dysfunction and Purkinje cell death in feline Niemann-Pick type C1 disease. Sci Transl Med. 2015;7(276):276ra26.
pubmed: 25717099 pmcid: 4415615 doi: 10.1126/scitranslmed.3010101
Ottinger EA, Kao ML, Carrillo-Carrasco N, Yanjanin N, Shankar RK, Janssen M, et al. Collaborative development of 2-hydroxypropyl-beta-cyclodextrin for the treatment of Niemann-Pick type C1 disease. Curr Top Med Chem. 2014;14(3):330–9.
pubmed: 24283970 pmcid: 4048128 doi: 10.2174/1568026613666131127160118
Maarup TJ, Chen AH, Porter FD, Farhat NY, Ory DS, Sidhu R, et al. Intrathecal 2-hydroxypropyl-beta-cyclodextrin in a single patient with Niemann-Pick C1. Mol Genet Metab. 2015;116(1-2):75–9.
pubmed: 26189084 pmcid: 4633280 doi: 10.1016/j.ymgme.2015.07.001
Walkley SU, Davidson CD, Jacoby J, Marella PD, Ottinger EA, Austin CP, et al. Fostering collaborative research for rare genetic disease: the example of niemann-pick type C disease. Orphanet J Rare Dis. 2016;11(1):161.
pubmed: 27903269 pmcid: 5131440 doi: 10.1186/s13023-016-0540-x
Berry-Kravis E, Chin J, Hoffmann A, Winston A, Stoner R, LaGorio L, et al. Long-term treatment of Niemann-Pick Type C1 disease with intrathecal 2-hydroxypropyl-beta-cyclodextrin. Pediatr Neurol. 2018;80:24–34.
pubmed: 29429782 pmcid: 5857219 doi: 10.1016/j.pediatrneurol.2017.12.014
Ory DS, Ottinger EA, Farhat NY, King KA, Jiang X, Weissfeld L, et al. Intrathecal 2-hydroxypropyl-beta-cyclodextrin decreases neurological disease progression in Niemann-Pick disease, type C1: a non-randomised, open-label, phase 1-2 trial. Lancet. 2017;390(10104):1758–68.
pubmed: 28803710 pmcid: 6176479 doi: 10.1016/S0140-6736(17)31465-4
Falkenburger BH, Jensen JB, Dickson EJ, Suh BC, Hille B. Phosphoinositides: lipid regulators of membrane proteins. J Physiol. 2010;588(Pt 17):3179–85.
pubmed: 20519312 pmcid: 2976013 doi: 10.1113/jphysiol.2010.192153
Rameh LE, Tolias KF, Duckworth BC, Cantley LC. A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate. Nature. 1997;390(6656):192–6.
pubmed: 9367159 doi: 10.1038/36621
Viaud J, Mansour R, Antkowiak A, Mujalli A, Valet C, Chicanne G, et al. Phosphoinositides: important lipids in the coordination of cell dynamics. Biochimie. 2016;125:250–8.
pubmed: 26391221 doi: 10.1016/j.biochi.2015.09.005
Liu C, Deb S, Ferreira VS, Xu E, Baumgart T. Kinetics of PTEN-mediated PI(3,4,5)P3 hydrolysis on solid supported membranes. PLoS One. 2018;13(2):e0192667.
pubmed: 29447222 pmcid: 5813967 doi: 10.1371/journal.pone.0192667
De Craene JO, Bertazzi DL, Bar S, Friant S. Phosphoinositides, major actors in membrane trafficking and lipid signaling pathways. Int J Mol Sci. 2017;18(3)
Wallroth A, Haucke V. Phosphoinositide conversion in endocytosis and the endolysosomal system. J Biol Chem. 2018;293(5):1526–35.
pubmed: 29282290 doi: 10.1074/jbc.R117.000629
Sohn M, Korzeniowski M, Zewe JP, Wills RC, Hammond GRV, Humpolickova J, et al. PI(4,5)P2 controls plasma membrane PI4P and PS levels via ORP5/8 recruitment to ER-PM contact sites. J Cell Biol. 2018;217(5):1797–813.
pubmed: 29472386 pmcid: 5940310 doi: 10.1083/jcb.201710095
Pergande MR, Serna-Perez F, Mohsin SB, Hanek J, Cologna SM. Lipidomic analysis reveals altered fatty acid metabolism in the liver of the symptomatic Niemann-Pick, Type C1 mouse model. Proteomics. 2019;19(18):e1800285.
pubmed: 31394590 doi: 10.1002/pmic.201800285
Tobias F, Pathmasiri KC, Cologna SM. Mass spectrometry imaging reveals ganglioside and ceramide localization patterns during cerebellar degeneration in the Npc1(-/-) mouse model. Anal Bioanal Chem. 2019;411(22):5659–68.
pubmed: 31254056 doi: 10.1007/s00216-019-01989-7
Boenzi S, Catesini G, Sacchetti E, Tagliaferri F, Dionisi-Vici C, Deodato F. Comprehensive-targeted lipidomic analysis in Niemann-Pick C disease. Mol Genet Metab. 2021;134(4):337–43.
pubmed: 34810067 doi: 10.1016/j.ymgme.2021.11.005
Fan M, Sidhu R, Fujiwara H, Tortelli B, Zhang J, Davidson C, et al. Identification of Niemann-Pick C1 disease biomarkers through sphingolipid profiling. J Lipid Res. 2013;54(10):2800–14.
pubmed: 23881911 pmcid: 3770093 doi: 10.1194/jlr.M040618
Marquer C, Tian H, Yi J, Bastien J, Dall’Armi C, Yang-Klingler Y, et al. Arf6 controls retromer traffic and intracellular cholesterol distribution via a phosphoinositide-based mechanism. Nat Commun. 2016;7:11919.
pubmed: 27336679 pmcid: 4931008 doi: 10.1038/ncomms11919
Honda A, Nogami M, Yokozeki T, Yamazaki M, Nakamura H, Watanabe H, et al. Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell. 1999;99(5):521–32.
pubmed: 10589680 doi: 10.1016/S0092-8674(00)81540-8
Peters PJ, Hsu VW, Ooi CE, Finazzi D, Teal SB, Oorschot V, et al. Overexpression of wild-type and mutant ARF1 and ARF6: distinct perturbations of nonoverlapping membrane compartments. J Cell Biol. 1995;128(6):1003–17.
pubmed: 7896867 doi: 10.1083/jcb.128.6.1003
Brown FD, Rozelle AL, Yin HL, Balla T, Donaldson JG. Phosphatidylinositol 4,5-bisphosphate and Arf6-regulated membrane traffic. J Cell Biol. 2001;154(5):1007–17.
pubmed: 11535619 pmcid: 2196179 doi: 10.1083/jcb.200103107
Schweitzer JK, Pietrini SD, D’Souza-Schorey C. ARF6-mediated endosome recycling reverses lipid accumulation defects in Niemann-Pick Type C disease. PLoS One. 2009;4(4):e5193.
pubmed: 19365558 pmcid: 2664925 doi: 10.1371/journal.pone.0005193
Pergande MR, Zarate E, Haney-Ball C, Davidson CD, Scesa G, Givogri MI, et al. Standard-flow LC and thermal focusing ESI elucidates altered liver proteins in late stage Niemann-Pick, type C1 disease. Bioanalysis. 2019;11(11):1067–83.
pubmed: 31251104 pmcid: 9933893 doi: 10.4155/bio-2018-0232
Pergande MR, Nguyen TTA, Haney-Ball C, Davidson CD, Cologna SM. Quantitative, label-free proteomics in the symptomatic Niemann-Pick, Type C1 mouse model using standard flow liquid chromatography and thermal focusing electrospray ionization. Proteomics. 2019;19(9):e1800432.
pubmed: 30888112 doi: 10.1002/pmic.201800432
Pathmasiri KC, Pergande MR, Tobias F, Rebiai R, Rosenhouse-Dantsker A, Bongarzone ER, et al. Mass spectrometry imaging and LC/MS reveal decreased cerebellar phosphoinositides in Niemann-Pick type C1-null mice. J Lipid Res. 2020;61(7):1004–13.
pubmed: 32371566 pmcid: 7328050 doi: 10.1194/jlr.RA119000606
Vivas O, Tiscione SA, Dixon RE, Ory DS, Dickson EJ. Niemann-Pick Type C disease reveals a link between lysosomal cholesterol and PtdIns(4,5)P2 that regulates neuronal excitability. Cell Rep. 2019;27(9):2636–48 e4.
pubmed: 31141688 pmcid: 6553496 doi: 10.1016/j.celrep.2019.04.099
Kutchukian C, Vivas O, Casas M, Jones JG, Tiscione SA, Simo S, et al. NPC1 regulates the distribution of phosphatidylinositol 4-kinases at Golgi and lysosomal membranes. EMBO J. 2021;40(13):e105990.
pubmed: 34019311 pmcid: 8246069 doi: 10.15252/embj.2020105990
Tiscione SA, Casas M, Horvath JD, Lam V, Hino K, Ory DS, et al. IP3R-driven increases in mitochondrial Ca(2+) promote neuronal death in NPC disease. Proc Natl Acad Sci U S A. 2021;118(40)
Morioka S, Nakanishi H, Yamamoto T, Hasegawa J, Tokuda E, Hikita T, et al. A mass spectrometric method for in-depth profiling of phosphoinositide regioisomers and their disease-associated regulation. Nat Commun. 2022;13(1):83.
pubmed: 35013169 pmcid: 8749000 doi: 10.1038/s41467-021-27648-z
Tobias F, Olson MT, Cologna SM. Mass spectrometry imaging of lipids: untargeted consensus spectra reveal spatial distributions in Niemann-Pick disease type C1. J Lipid Res. 2018;59(12):2446–55.
pubmed: 30266834 pmcid: 6277165 doi: 10.1194/jlr.D086090

Auteurs

Stephanie M Cologna (SM)

Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA. cologna@uic.edu.

Koralege C Pathmasiri (KC)

Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA.

Melissa R Pergande (MR)

Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA.

Avia Rosenhouse-Dantsker (A)

Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA. dantsker@uic.edu.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH