Detection of antinuclear antibodies: recommendations from EFLM, EASI and ICAP.
HEp-2 indirect immunofluorescence
antinuclear antibodies
recommendations
Journal
Clinical chemistry and laboratory medicine
ISSN: 1437-4331
Titre abrégé: Clin Chem Lab Med
Pays: Germany
ID NLM: 9806306
Informations de publication
Date de publication:
27 06 2023
27 06 2023
Historique:
received:
27
02
2023
accepted:
27
02
2023
medline:
30
5
2023
pubmed:
30
3
2023
entrez:
29
3
2023
Statut:
epublish
Résumé
Antinuclear antibodies (ANA) are important for the diagnosis of various autoimmune diseases. ANA are usually detected by indirect immunofluorescence assay (IFA) using HEp-2 cells (HEp-2 IFA). There are many variables influencing HEp-2 IFA results, such as subjective visual reading, serum screening dilution, substrate manufacturing, microscope components and conjugate. Newer developments on ANA testing that offer novel features adopted by some clinical laboratories include automated computer-assisted diagnosis (CAD) systems and solid phase assays (SPA). A group of experts reviewed current literature and established recommendations on methodological aspects of ANA testing. This process was supported by a two round Delphi exercise. International expert groups that participated in this initiative included (i) the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) Working Group "Autoimmunity Testing"; (ii) the European Autoimmune Standardization Initiative (EASI); and (iii) the International Consensus on ANA Patterns (ICAP). In total, 35 recommendations/statements related to (i) ANA testing and reporting by HEp-2 IFA; (ii) HEp-2 IFA methodological aspects including substrate/conjugate selection and the application of CAD systems; (iii) quality assurance; (iv) HEp-2 IFA validation/verification approaches and (v) SPA were formulated. Globally, 95% of all submitted scores in the final Delphi round were above 6 (moderately agree, agree or strongly agree) and 85% above 7 (agree and strongly agree), indicating strong international support for the proposed recommendations. These recommendations are an important step to achieve high quality ANA testing.
Identifiants
pubmed: 36989417
pii: cclm-2023-0209
doi: 10.1515/cclm-2023-0209
doi:
Substances chimiques
Antibodies, Antinuclear
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1167-1198Informations de copyright
© 2023 Walter de Gruyter GmbH, Berlin/Boston.
Références
Bossuyt, X, De Langhe, E, Borghi, MO, Meroni, PL. Understanding and interpreting antinuclear antibody tests in systemic rheumatic diseases. Nat Rev Rheumatol 2020;16:715–26. https://doi.org/10.1038/s41584-020-00522-w .
doi: 10.1038/s41584-020-00522-w
Martini, A, Ravelli, A, Avcin, T, Beresford, MW, Burgos-Vargas, R, Cuttica, R, et al.. Toward new classification criteria for juvenile idiopathic arthritis: first steps, pediatric Rheumatology international trials organization international consensus. J Rheumatol 2019;46:190–7. https://doi.org/10.3899/jrheum.180168 .
doi: 10.3899/jrheum.180168
Vergani, D, Alvarez, F, Bianchi, FB, Cancado, EL, Mackay, IR, Manns, MP, et al.. Liver autoimmune serology: a consensus statement from the committee for autoimmune serology of the International Autoimmune Hepatitis Group. J Hepatol 2004;41:677–83. https://doi.org/10.1016/j.jhep.2004.08.002 .
doi: 10.1016/j.jhep.2004.08.002
EASL, Beuers, U, Corpechot, C, Invernizzi, P, Jones, D, Marzioni, M, et al.. EASL clinical practice guidelines: the diagnosis and management of patients with primary biliary cholangitis. J Hepatol 2017;67:145–72. https://doi.org/10.1016/j.jhep.2017.03.022 .
doi: 10.1016/j.jhep.2017.03.022
Francescantonio, PL, Cruvinel Wde, M, Dellavance, A, Andrade, LE, Taliberti, BH, von Muhlen, CA, et al.. IV Brazilian guidelines for autoantibodies on HEp-2 cells. Rev Bras Reumatol 2014;54:44–50. https://doi.org/10.1016/j.rbre.2014.02.006 .
doi: 10.1016/j.rbre.2014.02.006
Ling, M, Murali, M. Antinuclear antibody tests. Clin Lab Med 2019;39:513–24. https://doi.org/10.1016/j.cll.2019.07.001 .
doi: 10.1016/j.cll.2019.07.001
Meroni, PL, Schur, PH. ANA screening: an old test with new recommendations. Ann Rheum Dis 2010;69:1420–2. https://doi.org/10.1136/ard.2009.127100 .
doi: 10.1136/ard.2009.127100
Agmon-Levin, N, Damoiseaux, J, Kallenberg, C, Sack, U, Witte, T, Herold, M, et al.. International recommendations for the assessment of autoantibodies to cellular antigens referred to as anti-nuclear antibodies. Ann Rheum Dis 2014;73:17–23. https://doi.org/10.1136/annrheumdis-2013-203863 .
doi: 10.1136/annrheumdis-2013-203863
Aringer, M, Costenbader, K, Daikh, D, Brinks, R, Mosca, M, Ramsey-Goldman, R, et al.. European league against rheumatism/American college of rheumatology classification criteria for systemic lupus erythematosus. Arthritis Rheumatol 2019;71:1400–12. https://doi.org/10.1002/art.40930 .
doi: 10.1002/art.40930
Orme, ME, Andalucia, C, Sjolander, S, Bossuyt, X. A hierarchical bivariate meta-analysis of diagnostic test accuracy to provide direct comparisons of immunoassays vs. indirect immunofluorescence for initial screening of connective tissue diseases. Clin Chem Lab Med 2021;59:547–61. https://doi.org/10.1515/cclm-2020-0094 .
doi: 10.1515/cclm-2020-0094
Bossuyt, X, Fieuws, S. Detection of antinuclear antibodies: added value of solid phase assay? Ann Rheum Dis 2014;73:e10. https://doi.org/10.1136/annrheumdis-2013-204793 .
doi: 10.1136/annrheumdis-2013-204793
Orme, ME, Andalucia, C, Sjolander, S, Bossuyt, X. A comparison of a fluorescence enzyme immunoassay vs. indirect immunofluorescence for initial screening of connective tissue diseases: systematic literature review and meta-analysis of diagnostic test accuracy studies. Best Pract Res Clin Rheumatol 2018;32:521–34. https://doi.org/10.1016/j.berh.2019.03.005 .
doi: 10.1016/j.berh.2019.03.005
Bizzaro, N. Can solid-phase assays replace immunofluorescence for ANA screening? Ann Rheum Dis 2020;79:e32. https://doi.org/10.1136/annrheumdis-2018-214805 .
doi: 10.1136/annrheumdis-2018-214805
Willems, P, De Langhe, E, Claessens, J, Westhovens, R, Van Hoeyveld, E, Poesen, K, et al.. Screening for connective tissue disease-associated antibodies by automated immunoassay. Clin Chem Lab Med 2018;56:909–18. https://doi.org/10.1515/cclm-2017-0905 .
doi: 10.1515/cclm-2017-0905
Op De Beeck, K, Vermeersch, P, Verschueren, P, Westhovens, R, Marien, G, Blockmans, D, et al.. Detection of antinuclear antibodies by indirect immunofluorescence and by solid phase assay. Autoimmun Rev 2011;10:801–8. https://doi.org/10.1016/j.autrev.2011.06.005 .
doi: 10.1016/j.autrev.2011.06.005
Claessens, J, Belmondo, T, De Langhe, E, Westhovens, R, Poesen, K, Hue, S, et al.. Solid phase assays vs. automated indirect immunofluorescence for detection of antinuclear antibodies. Autoimmun Rev 2018;17:533–40. https://doi.org/10.1016/j.autrev.2018.03.002 .
doi: 10.1016/j.autrev.2018.03.002
Bossuyt, X, Claessens, J, De Langhe, E, Belmondo, T, Westhovens, R, Hue, S, et al.. Antinuclear antibodies by indirect immunofluorescence and solid phase assays. Ann Rheum Dis 2020;79:e65. https://doi.org/10.1136/annrheumdis-2019-215443 .
doi: 10.1136/annrheumdis-2019-215443
Bizzaro, N, Brusca, I, Previtali, G, Alessio, MG, Daves, M, Platzgummer, S, et al.. The association of solid-phase assays to immunofluorescence increases the diagnostic accuracy for ANA screening in patients with autoimmune rheumatic diseases. Autoimmun Rev 2018;17:541–7. https://doi.org/10.1016/j.autrev.2017.12.007 .
doi: 10.1016/j.autrev.2017.12.007
Ravelli, A, Felici, E, Magni-Manzoni, S, Pistorio, A, Novarini, C, Bozzola, E, et al.. Patients with antinuclear antibody-positive juvenile idiopathic arthritis constitute a homogeneous subgroup irrespective of the course of joint disease. Arthritis Rheum 2005;52:826–32. https://doi.org/10.1002/art.20945 .
doi: 10.1002/art.20945
Ravelli, A, Varnier, GC, Oliveira, S, Castell, E, Arguedas, O, Magnani, A, et al.. Antinuclear antibody-positive patients should be grouped as a separate category in the classification of juvenile idiopathic arthritis. Arthritis Rheum 2011;63:267–75. https://doi.org/10.1002/art.30076 .
doi: 10.1002/art.30076
Rypdal, V, Glerup, M, Songstad, NT, Bertelsen, G, Christoffersen, T, Arnstad, ED, et al.. Uveitis in juvenile idiopathic arthritis: 18-year outcome in the population-based Nordic cohort study. Ophthalmology 2021;128:598–608. https://doi.org/10.1016/j.ophtha.2020.08.024 .
doi: 10.1016/j.ophtha.2020.08.024
Nordal, E, Rypdal, V, Christoffersen, T, Aalto, K, Berntson, L, Fasth, A, et al.. Incidence and predictors of Uveitis in juvenile idiopathic arthritis in a Nordic long-term cohort study. Pediatr Rheumatol Online J 2017;15:66. https://doi.org/10.1186/s12969-017-0195-8 .
doi: 10.1186/s12969-017-0195-8
Saurenmann, RK, Levin, AV, Feldman, BM, Laxer, RM, Schneider, R, Silverman, ED. Risk factors for development of uveitis differ between girls and boys with juvenile idiopathic arthritis. Arthritis Rheum 2010;62:1824–8. https://doi.org/10.1002/art.27416 .
doi: 10.1002/art.27416
Nordal, EB, Songstad, NT, Berntson, L, Moen, T, Straume, B, Rygg, M. Biomarkers of chronic uveitis in juvenile idiopathic arthritis: predictive value of antihistone antibodies and antinuclear antibodies. J Rheumatol 2009;36:1737–43. https://doi.org/10.3899/jrheum.081318 .
doi: 10.3899/jrheum.081318
Storwick, JA, Brett, A, Buhler, K, Chin, A, Schmeling, H, Johnson, N, et al.. Prevalence and titres of antinuclear antibodies in juvenile idiopathic arthritis: a systematic review and meta-analysis. Autoimmun Rev 2022;21:103086. https://doi.org/10.1016/j.autrev.2022.103086 .
doi: 10.1016/j.autrev.2022.103086
Alvarez, F, Berg, PA, Bianchi, FB, Bianchi, L, Burroughs, AK, Cancado, EL, et al.. International autoimmune hepatitis group report: review of criteria for diagnosis of autoimmune hepatitis. J Hepatol 1999;31:929–38. https://doi.org/10.1016/s0168-8278(99)80297-9 .
doi: 10.1016/s0168-8278(99)80297-9
Hennes, EM, Zeniya, M, Czaja, AJ, Pares, A, Dalekos, GN, Krawitt, EL, et al.. Simplified criteria for the diagnosis of autoimmune hepatitis. Hepatology 2008;48:169–76. https://doi.org/10.1002/hep.22322 .
doi: 10.1002/hep.22322
European Association for the Study of the Liver . EASL clinical practice guidelines: autoimmune hepatitis. J Hepatol 2015;63:971–1004.
Mieli-Vergani, G, Vergani, D, Baumann, U, Czubkowski, P, Debray, D, Dezsofi, A, et al.. Diagnosis and management of pediatric autoimmune liver disease: ESPGHAN hepatology committee position statement. J Pediatr Gastroenterol Nutr 2018;66:345–60. https://doi.org/10.1097/mpg.0000000000001801 .
doi: 10.1097/mpg.0000000000001801
Porcelli, B, Terzuoli, L, Bacarelli, MR, Cinci, F, Bizzaro, N. How reliable is the detection of anti-mitochondrial antibodies on murine triple-tissue? Clin Chem Lab Med 2020;58:e142–3. https://doi.org/10.1515/cclm-2019-1210 .
doi: 10.1515/cclm-2019-1210
Florin, L, Rubben, K, Vanhaecke, A, Devreese, K, De Keyser, F, Smith, V, et al.. Evaluation of the primary biliary cholangitis-related serologic profile in a large cohort of Belgian systemic sclerosis patients. Clin Chem Lab Med 2020;58:416–23. https://doi.org/10.1515/cclm-2019-0655 .
doi: 10.1515/cclm-2019-0655
Guo, YP, Wang, CG, Liu, X, Huang, YQ, Guo, DL, Jing, XZ, et al.. The prevalence of antinuclear antibodies in the general population of China: a cross-sectional study. Curr Ther Res Clin Exp 2014;76:116–9. https://doi.org/10.1016/j.curtheres.2014.06.004 .
doi: 10.1016/j.curtheres.2014.06.004
Satoh, M, Chan, EK, Ho, LA, Rose, KM, Parks, CG, Cohn, RD, et al.. Prevalence and sociodemographic correlates of antinuclear antibodies in the United States. Arthritis Rheum 2012;64:2319–27. https://doi.org/10.1002/art.34380 .
doi: 10.1002/art.34380
Akmatov, MK, Rober, N, Ahrens, W, Flesch-Janys, D, Fricke, J, Greiser, H, et al.. Anti-nuclear autoantibodies in the general German population: prevalence and lack of association with selected cardiovascular and metabolic disorders-findings of a multicenter population-based study. Arthritis Res Ther 2017;19:127. https://doi.org/10.1186/s13075-017-1338-5 .
doi: 10.1186/s13075-017-1338-5
Mariz, HA, Sato, EI, Barbosa, SH, Rodrigues, SH, Dellavance, A, Andrade, LE. Pattern on the antinuclear antibody-HEp-2 test is a critical parameter for discriminating antinuclear antibody-positive healthy individuals and patients with autoimmune rheumatic diseases. Arthritis Rheum 2011;63:191–200. https://doi.org/10.1002/art.30084 .
doi: 10.1002/art.30084
Wener, MH, Fink, SL, Morishima, C, Chaudhary, A, Hutchinson, K. Anti-nuclear antibody quantitation: calibration and harmonization adjustment via population interrogation. J Appl Lab Med 2022;7:46–56. https://doi.org/10.1093/jalm/jfab142 .
doi: 10.1093/jalm/jfab142
Sperotto, F, Cuffaro, G, Brachi, S, Seguso, M, Zulian, F. Prevalence of antinuclear antibodies in schoolchildren during puberty and possible relationship with musculoskeletal pain: a longitudinal study. J Rheumatol 2014;41:1405–8. https://doi.org/10.3899/jrheum.130948 .
doi: 10.3899/jrheum.130948
Hilario, MO, Len, CA, Roja, SC, Terreri, MT, Almeida, G, Andrade, LE. Frequency of antinuclear antibodies in healthy children and adolescents. Clin Pediatr 2004;43:637–42. https://doi.org/10.1177/000992280404300709 .
doi: 10.1177/000992280404300709
Somers, EC, Monrad, SU, Warren, JS, Solano, M, Schnaas, L, Hernandez-Avila, M, et al.. Antinuclear antibody prevalence in a general pediatric cohort from Mexico City: discordance between immunofluorescence and multiplex assays. Clin Epidemiol 2017;9:1–8. https://doi.org/10.2147/clep.s121632 .
doi: 10.2147/clep.s121632
Wananukul, S, Voramethkul, W, Kaewopas, Y, Hanvivatvong, O. Prevalence of positive antinuclear antibodies in healthy children. Asian Pac J Allergy Immunol 2005;23:153–7.
Arroyave, CM, Giambrone, MJ, Rich, KC, Walaszek, M. The frequency of antinuclear antibody (ANA) in children by use of mouse kidney (MK) and human epithelial cells (HEp-2) as substrates. J Allergy Clin Immunol 1988;82:741–4. https://doi.org/10.1016/0091-6749(88)90073-5 .
doi: 10.1016/0091-6749(88)90073-5
Wichainun, R, Kasitanon, N, Wangkaew, S, Hongsongkiat, S, Sukitawut, W, Louthrenoo, W. Sensitivity and specificity of ANA and anti-dsDNA in the diagnosis of systemic lupus erythematosus: a comparison using control sera obtained from healthy individuals and patients with multiple medical problems. Asian Pac J Allergy Immunol 2013;31:292–8. https://doi.org/10.12932/ap0272.31.4.2013 .
doi: 10.12932/ap0272.31.4.2013
Mohammed, ME, Abdelhafiz, K. Autoantibodies in the sera of breast cancer patients: antinuclear and anti-double stranded DNA antibodies as example. J Cancer Res Therapeut 2015;11:341–4. https://doi.org/10.4103/0973-1482.157314 .
doi: 10.4103/0973-1482.157314
Agustinelli, RA, Rodrigues, SH, Mariz, HA, Prado, MS, Andrade, LEC. Distinctive features of positive anti-cell antibody tests (indirect immunofluorescence on HEp-2 cells) in patients with non-autoimmune diseases. Lupus 2019;28:629–34. https://doi.org/10.1177/0961203319838348 .
doi: 10.1177/0961203319838348
Chan, EKL, von Mühlen, CA, Fritzler, MJ, Damoiseaux, J, Infantino, M, Klotz, W, et al.., ICAP Committee . The International Consensus on ANA Patterns (ICAP) in 2021-the 6th workshop and current perspectives. J Appl Lab Med 2022;7:322–30. https://doi.org/10.1093/jalm/jfab140 .
doi: 10.1093/jalm/jfab140
von Muhlen, CA, Garcia-De La Torre, I, Infantino, M, Damoiseaux, J, Andrade, LEC, Carballo, OG, et al.. How to report the antinuclear antibodies (anti-cell antibodies) test on HEp-2 cells: guidelines from the ICAP initiative. Immunol Res 2021;69:594–608. https://doi.org/10.1007/s12026-021-09233-0 .
doi: 10.1007/s12026-021-09233-0
Clinical and Laboratory Standards Institute . CLSI I/LA2-A. Quality assurance for the indirect immunofluorescence test for autoantibodies to nuclear antigen (IF-ANA). Approved guideline . USA: CLSI; 1996.
Clinical and Laboratory Standards Institute . CLSI I/LA02-A2. Quality assurance of laboratory tests for autoantibodies to nuclear antigens: (1) indirect fluorescence assay for microscopy and (2) microtiter enzyme immunoassay methods . Wayne, PA, USA: CLSI; 2006.
Damoiseaux, J, Agmon-Levin, N, Van Blerk, M, Chopyak, V, Eriksson, C, Heijnen, I, et al.. From ANA-screening to antigen-specificity: an EASI-survey on the daily practice in European countries. Clin Exp Rheumatol 2014;32:539–46.
Goodwin, JS, Searles, RP, Tung, KS. Immunological responses of healthy elderly population. Clin Exp Immunol 1982;48:403–10.
Arnaud, L, Fagot, JP, Mathian, A, Paita, M, Fagot-Campagna, A, Amoura, Z. Prevalence and incidence of systemic lupus erythematosus in France: a 2010 nation-wide population-based study. Autoimmun Rev 2014;13:1082–9. https://doi.org/10.1016/j.autrev.2014.08.034 .
doi: 10.1016/j.autrev.2014.08.034
Svensson, J, Arkema, EV, Lundberg, IE, Holmqvist, M. Incidence and prevalence of idiopathic inflammatory myopathies in Sweden: a nationwide population-based study. Rheumatology 2017;56:802–10. https://doi.org/10.1093/rheumatology/kew503 .
doi: 10.1093/rheumatology/kew503
Royle, JG, Lanyon, PC, Grainge, MJ, Abhishek, A, Pearce, FA. The incidence, prevalence, and survival of systemic sclerosis in the UK clinical practice research datalink. Clin Rheumatol 2018;37:2103–11. https://doi.org/10.1007/s10067-018-4182-3 .
doi: 10.1007/s10067-018-4182-3
Thierry, S, Fautrel, B, Lemelle, I, Guillemin, F. Prevalence and incidence of juvenile idiopathic arthritis: a systematic review. Joint Bone Spine 2014;81:112–7. https://doi.org/10.1016/j.jbspin.2013.09.003 .
doi: 10.1016/j.jbspin.2013.09.003
Willems, P, De Langhe, E, Westhovens, R, Vanderschueren, S, Blockmans, D, Bossuyt, X. Antinuclear antibody as entry criterion for classification of systemic lupus erythematosus: pitfalls and opportunities. Ann Rheum Dis 2019;78:e76. https://doi.org/10.1136/annrheumdis-2018-213821 .
doi: 10.1136/annrheumdis-2018-213821
Bossuyt, X., Fierz, W., & Meroni, P. L. (2021). Correspondence on “European League Against Rheumatism (EULAR)/American College of Rheumatology (ACR) SLE classification criteria item performance” by Aringer et al. Annals of the rheumatic diseases, annrheumdis-2021-221288. Advance online publication. https://doi.org/10.1136/annrheumdis-2021-221288
doi: 10.1136/annrheumdis-2021-221288
Bossuyt, X, Claessens, J, Belmondo, T, De Langhe, E, Westhovens, R, Poesen, K, et al.. Harmonization of clinical interpretation of antinuclear antibody test results by solid phase assay and by indirect immunofluorescence through likelihood ratios. Autoimmun Rev 2019;18:102386. https://doi.org/10.1016/j.autrev.2019.102386 .
doi: 10.1016/j.autrev.2019.102386
Vulsteke, JB, Van Hoovels, L, Willems, P, Vander Cruyssen, B, Vanderschueren, S, Westhovens, R, et al.. Titre-specific positive predictive value of antinuclear antibody patterns. Ann Rheum Dis 2019;80:e128. https://doi.org/10.1136/annrheumdis-2019-216245 .
doi: 10.1136/annrheumdis-2019-216245
Cheng, CF, Lan, TY, Shih, MC, Li, KJ. Monospecific anti-DFS70 antibodies are moderately helpful in excluding ANA-associated rheumatic disease in patients presenting with a dense fine speckled pattern – a systematic review and meta-analysis of diagnostic test accuracy. Autoimmun Rev 2020;19:102637. https://doi.org/10.1016/j.autrev.2020.102637 .
doi: 10.1016/j.autrev.2020.102637
Vermeersch, P, Bossuyt, X. Comparative analysis of different approaches to report diagnostic accuracy. Arch Intern Med 2010;170:734–5. https://doi.org/10.1001/archinternmed.2010.84 .
doi: 10.1001/archinternmed.2010.84
Bossuyt, X. Clinical performance characteristics of a laboratory test. A practical approach in the autoimmune laboratory. Autoimmun Rev 2009;8:543–8. https://doi.org/10.1016/j.autrev.2009.01.013 .
doi: 10.1016/j.autrev.2009.01.013
Malleson, PN, Sailer, M, Mackinnon, MJ. Usefulness of antinuclear antibody testing to screen for rheumatic diseases. Arch Dis Child 1997;77:299–304. https://doi.org/10.1136/adc.77.4.299 .
doi: 10.1136/adc.77.4.299
McGhee, JL, Kickingbird, LM, Jarvis, JN. Clinical utility of antinuclear antibody tests in children. BMC Pediatr 2004;4:13. https://doi.org/10.1186/1471-2431-4-13 .
doi: 10.1186/1471-2431-4-13
Chan, EK, Damoiseaux, J, Carballo, OG, Conrad, K, de Melo Cruvinel, W, Francescantonio, PL, et al.. Report of the first international consensus on standardized nomenclature of antinuclear antibody HEp-2 cell patterns 2014–2015. Front Immunol 2015;6:412. https://doi.org/10.3389/fimmu.2015.00412 .
doi: 10.3389/fimmu.2015.00412
Damoiseaux, J, Andrade, LEC, Carballo, OG, Conrad, K, Francescantonio, PLC, Fritzler, MJ, et al.. Clinical relevance of HEp-2 indirect immunofluorescent patterns: the International Consensus on ANA patterns (ICAP) perspective. Ann Rheum Dis 2019;78:879–89. https://doi.org/10.1136/annrheumdis-2018-214436 .
doi: 10.1136/annrheumdis-2018-214436
Cruvinel, WM, Andrade, LEC, von Muhlen, CA, Dellavance, A, Ximenes, AC, Bichara, CD, et al.. V Brazilian consensus guidelines for detection of anti-cell autoantibodies on HEp-2 cells. Adv Rheumatol 2019;59:28. https://doi.org/10.1186/s42358-019-0069-5 .
doi: 10.1186/s42358-019-0069-5
van Beek, AA, Schreurs, MWJ, Otten, HG, Bergkamp, FJM, Damoiseaux, JGMC. The updated Dutch guideline for laboratory diagnostics of ANA-associated auto-immune diseases. Paper Nederland Van Beek et al. Nederlands Tijdschr Allerg Klin Immunol 2021;2:58–64.
Van Hoovels, L, Broeders, S, Chan, EKL, Andrade, L, de Melo Cruvinel, W, Damoiseaux, J, et al.. Current laboratory and clinical practices in reporting and interpreting anti-nuclear antibody indirect immunofluorescence (ANA IIF) patterns: results of an international survey. Auto Immun Highlights 2020;11:17. https://doi.org/10.1186/s13317-020-00139-9 .
doi: 10.1186/s13317-020-00139-9
Tebo, AE, Schmidt, RL, Kadkhoda, K, Peterson, LK, Chan, EKL, Fritzler, MJ, et al.. The antinuclear antibody HEp-2 indirect immunofluorescence assay: a survey of laboratory performance, pattern recognition and interpretation. Auto Immun Highlights 2021;12:4. https://doi.org/10.1186/s13317-020-00146-w .
doi: 10.1186/s13317-020-00146-w
Vermeersch, P, Van den Bergh, K, Blockmans, D, Westhovens, R, Bossuyt, X. Anti-Golgi autoantibodies are not clinically associated with systemic autoimmune diseases. Ann Rheum Dis 2011;70:234–5. https://doi.org/10.1136/ard.2009.126391 .
doi: 10.1136/ard.2009.126391
Vermeersch, P, Bossuyt, X. Prevalence and clinical significance of rare antinuclear antibody patterns. Autoimmun Rev 2013;12:998–1003. https://doi.org/10.1016/j.autrev.2013.03.014 .
doi: 10.1016/j.autrev.2013.03.014
Peterson, LK, Tebo, AE, Wener, MH, Copple, SS, Fritzler, MJ. Assessment of antinuclear antibodies by indirect immunofluorescence assay: report from a survey by the American Association of Medical Laboratory Immunologists. Clin Chem Lab Med 2020;58:1489–97. https://doi.org/10.1515/cclm-2019-1262 .
doi: 10.1515/cclm-2019-1262
Irure-Ventura, J, Rodriguez, C, Vergara-Prieto, E, Vargas, ML, Quirant, B, Jurado, A, et al.. Rare immunofluorescence patterns of autoantibodies on HEp-2 cells defined by ICAP identify different autoimmune diseases in the absence of associated specificities: a Spanish multicentre study. Rheumatology 2021;60:3904–12.
Vermeersch, P, De Beeck, KO, Lauwerys, BR, Van den Bergh, K, Develter, M, Marien, G, et al.. Antinuclear antibodies directed against proliferating cell nuclear antigen are not specifically associated with systemic lupus erythematosus. Ann Rheum Dis 2009;68:1791–3. https://doi.org/10.1136/ard.2008.104190 .
doi: 10.1136/ard.2008.104190
Dellavance, A, Cruvinel, W, Francescantonio, P, Mangueira, C, Drugowick, I, Rodrigues, S, et al.. Variability in the recognition of distinctive immunofluorescence patterns in different brands of HEp-2 cell slides. J Bras Patol Med Lab 2013;49:182–90. https://doi.org/10.1590/s1676-24442013000300005 .
doi: 10.1590/s1676-24442013000300005
Dellavance, A, Cançado, EL, Abrantes-Lemos, CP, Harriz, M, Marvulle, V, Andrade, LE. Humoral autoimmune response heterogeneity in the spectrum of primary biliary cirrhosis. Hepatol Int 2012;7:775–84. https://doi.org/10.1007/s12072-012-9413-0 .
doi: 10.1007/s12072-012-9413-0
Bizzaro, N, Tonutti, E, Villalta, D. Recognizing the dense fine speckled/lens epithelium-derived growth factor/p75 pattern on HEp-2 cells: not an easy task! Comment on the article by Mariz et al. Arthritis Rheum 2011;63:4036–7. https://doi.org/10.1002/art.30621 .
doi: 10.1002/art.30621
Bentow, C, Fritzler, MJ, Mummert, E, Mahler, M. Recognition of the dense fine speckled (DFS) pattern remains challenging: results from an international internet-based survey. Auto Immun Highlights 2016;7:8. https://doi.org/10.1007/s13317-016-0081-2 .
doi: 10.1007/s13317-016-0081-2
Dellavance, A, Baldo, DC, Zheng, B, Mora, RA, Fritzler, MJ, Hiepe, F, et al.. Establishment of an international autoantibody reference standard for human anti-DFS70 antibodies: proof-of-concept study for a novel Megapool strategy by pooling individual specific sera. Clin Chem Lab Med 2019;57:1754–63. https://doi.org/10.1515/cclm-2019-0087 .
doi: 10.1515/cclm-2019-0087
Bonroy, C, Schouwers, S, Berth, M, Stubbe, M, Piette, Y, Hoffman, I, et al.. The importance of detecting anti-DFS70 in routine clinical practice: comparison of different care settings. Clin Chem Lab Med 2018;56:1090–9. https://doi.org/10.1515/cclm-2017-0541 .
doi: 10.1515/cclm-2017-0541
Mahler, M, Parker, T, Peebles, CL, Andrade, LE, Swart, A, Carbone, Y, et al.. Anti-DFS70/LEDGF antibodies are more prevalent in healthy individuals compared to patients with systemic autoimmune rheumatic diseases. J Rheumatol 2012;39:2104–10. https://doi.org/10.3899/jrheum.120598 .
doi: 10.3899/jrheum.120598
Albesa, R, Sachs, U, Infantino, M, Manfredi, M, Benucci, M, Baus, Y, et al.. Increased prevalence of anti-DFS70 antibodies in young females: experience from a large international multi-center study on blood donors. Clin Chem Lab Med 2019;57:999–1005. https://doi.org/10.1515/cclm-2018-1233 .
doi: 10.1515/cclm-2018-1233
Choi, MY, Clarke, E, St Pierre, Y, Hanly, JG, Urowitz, MB, Romero-Diaz, J, et al.. The prevalence and determinants of anti-DFS70 autoantibodies in an international inception cohort of systemic lupus erythematosus patients. Lupus 2017;26:1051–9. https://doi.org/10.1177/0961203317692437 .
doi: 10.1177/0961203317692437
Andrade, LEC, Klotz, W, Herold, M, Conrad, K, Ronnelid, J, Fritzler, MJ, et al.. International consensus on antinuclear antibody patterns: definition of the AC-29 pattern associated with antibodies to DNA topoisomerase I. Clin Chem Lab Med 2018;56:1783–8. https://doi.org/10.1515/cclm-2018-0188 .
doi: 10.1515/cclm-2018-0188
Lee, LA. Cutaneous lupus in infancy and childhood. Lupus 2010;19:1112–7. https://doi.org/10.1177/0961203310370347 .
doi: 10.1177/0961203310370347
Damoiseaux, J, Chan, EK. Response to: ‘the utility of the HEp-2000 antinuclear antibody substrate’ by Lee et al. Ann Rheum Dis 2020;79:e68. https://doi.org/10.1136/annrheumdis-2019-215610 .
doi: 10.1136/annrheumdis-2019-215610
Lee, AYS, Beroukas, D, Roberts-Thomson, PJ. Utility of the HEp-2000 antinuclear antibody substrate. Ann Rheum Dis 2020;79:e67. https://doi.org/10.1136/annrheumdis-2019-215519 .
doi: 10.1136/annrheumdis-2019-215519
Fritzler, MJ, Hanson, C, Miller, J, Eystathioy, T. Specificity of autoantibodies to SS-A/Ro on a transfected and overexpressed human 60 kDa Ro autoantigen substrate. J Clin Lab Anal 2002;16:103–8. https://doi.org/10.1002/jcla.10026 .
doi: 10.1002/jcla.10026
Keech, CL, McCluskey, J, Gordon, TP. Transfection and overexpression of the human 60-kDa Ro/SS-A autoantigen in HEp-2 cells. Clin Immunol Immunopathol 1994;73:146–51. https://doi.org/10.1006/clin.1994.1181 .
doi: 10.1006/clin.1994.1181
Peene, I, Van Ael, W, Vandenbossche, M, Vervaet, T, Veys, E, De Keyser, F. Sensitivity of the HEp-2000 substrate for the detection of anti-SSA/Ro60 antibodies. Clin Rheumatol 2000;19:291–5. https://doi.org/10.1007/s100670070048 .
doi: 10.1007/s100670070048
Bossuyt, X, Meurs, L, Mewis, A, Marien, G, Blanckaert, N. Screening for autoantibodies to SS-A/RO by indirect immunofluorescence using HEp-2000 cells. Ann Clin Biochem 2000;37:216–9. https://doi.org/10.1258/0004563001899032 .
doi: 10.1258/0004563001899032
Pollock, W, Toh, BH. Routine immunofluorescence detection of Ro/SS-A autoantibody using HEp-2 cells transfected with human 60 kDa Ro/SS-A. J Clin Pathol 1999;52:684–7. https://doi.org/10.1136/jcp.52.9.684 .
doi: 10.1136/jcp.52.9.684
Bossuyt, X, Frans, J, Hendrickx, A, Godefridis, G, Westhovens, R, Marien, G. Detection of anti-SSA antibodies by indirect immunofluorescence. Clin Chem 2004;50:2361–9. https://doi.org/10.1373/clinchem.2004.035964 .
doi: 10.1373/clinchem.2004.035964
Hoffman, IE, Peene, I, Veys, EM, De Keyser, F. Detection of specific antinuclear reactivities in patients with negative anti-nuclear antibody immunofluorescence screening tests. Clin Chem 2002;48:2171–6. https://doi.org/10.1093/clinchem/48.12.2171 .
doi: 10.1093/clinchem/48.12.2171
Bossuyt, X, Luyckx, A. Antibodies to extractable nuclear antigens in antinuclear antibody-negative samples. Clin Chem 2005;51:2426–7. https://doi.org/10.1373/clinchem.2005.058552 .
doi: 10.1373/clinchem.2005.058552
Kidd, K, Cusi, K, Mueller, R, Goodner, M, Boyes, B, Hoy, E. Detection and identification of significant ANAs in previously determined ANA negative samples. Clin Lab 2005;51:517–21.
Pisetsky, DS, Thompson, DK, Wajdula, J, Diehl, A, Sridharan, S. Variability in antinuclear antibody testing to assess patient eligibility for clinical trials of novel treatments for systemic lupus erythematosus. Arthritis Rheumatol 2019;71:1534–8. https://doi.org/10.1002/art.40910 .
doi: 10.1002/art.40910
Röber, N, Dellavance, A, Ingénito, F, Reimer, ML, Carballo, OG, Conrad, K, et al.. Strong association of the myriad discrete speckled nuclear pattern with anti-SS-A/Ro60 antibodies: consensus experience of four international expert centers. Front Immunol 2021;12:730102. https://doi.org/10.3389/fimmu.2021.730102 .
doi: 10.3389/fimmu.2021.730102
de Vlam, K, De Keyser, F, Verbruggen, G, Vandenbossche, M, Vanneuville, B, D’Haese, D, et al.. Detection and identification of antinuclear autoantibodies in the serum of normal blood donors. Clin Exp Rheumatol 1993;11:393–7.
Arcavi, M, Dadone, J. Antinuclear antibodies, patterns and characteristics obtained by immunofluorescence. The importance of the IgA, IgM and IgG isotypes. Medicina 2009;69:502–6.
Humbel, R. Detection of antinuclear antibodies by immunofluorescence. In: Van Venrooij, W, Maini, R, editors. Manual of biological markers of disease . Norwell, MA: Klevier Academic Publishers; 1993.
Kavanaugh, A, Tomar, R, Reveille, J, Solomon, DH, Homburger, HA. Guidelines for clinical use of the antinuclear antibody test and tests for specific autoantibodies to nuclear antigens. American College of Pathologists. Arch Pathol Lab Med 2000;124:71–81. https://doi.org/10.5858/2000-124-0071-gfcuot .
doi: 10.5858/2000-124-0071-gfcuot
Infantino, M, Meacci, F, Grossi, V, Manfredi, M, Benucci, M, Merone, M, et al.. The burden of the variability introduced by the HEp-2 assay kit and the CAD system in ANA indirect immunofluorescence test. Immunol Res 2017;65:345–54. https://doi.org/10.1007/s12026-016-8845-3 .
doi: 10.1007/s12026-016-8845-3
Harmon, CE. Antinuclear antibodies in autoimmune disease. Significance and pathogenicity. Med Clin North Am 1985;69:547–63.
De Rycke, L, Kruithof, E, Van Damme, N, Hoffman, IE, Van den Bossche, N, Van den Bosch, F, et al.. Antinuclear antibodies following infliximab treatment in patients with rheumatoid arthritis or spondylarthropathy. Arthritis Rheum 2003;48:1015–23. https://doi.org/10.1002/art.10876 .
doi: 10.1002/art.10876
Vermeire, S, Noman, M, Van Assche, G, Baert, F, Van Steen, K, Esters, N, et al.. Autoimmunity associated with anti-tumor necrosis factor alpha treatment in Crohn’s disease: a prospective cohort study. Gastroenterology 2003;125:32–9. https://doi.org/10.1016/s0016-5085(03)00701-7 .
doi: 10.1016/s0016-5085(03)00701-7
Bertin, D, Jourde-Chiche, N, Bongrand, P, Bardin, N. Original approach for automated quantification of antinuclear autoantibodies by indirect immunofluorescence. Clin Dev Immunol 2013;2013:182172. https://doi.org/10.1155/2013/182172 .
doi: 10.1155/2013/182172
Bertin, D, Mouhajir, Y, Bongrand, P, Bardin, N. ICARE improves antinuclear antibody detection by overcoming the barriers preventing accreditation. Clin Chim Acta 2016;454:57–61. https://doi.org/10.1016/j.cca.2015.12.034 .
doi: 10.1016/j.cca.2015.12.034
Bonroy, C, Verfaillie, C, Smith, V, Persijn, L, De Witte, E, De Keyser, F, et al.. Automated indirect immunofluorescence antinuclear antibody analysis is a standardized alternative for visual microscope interpretation. Clin Chem Lab Med 2013;51:1771–9. https://doi.org/10.1515/cclm-2013-0016 .
doi: 10.1515/cclm-2013-0016
Bizzaro, N, Antico, A, Platzgummer, S, Tonutti, E, Bassetti, D, Pesente, F, et al.. Automated antinuclear immunofluorescence antibody screening: a comparative study of six computer-aided diagnostic systems. Autoimmun Rev 2014;13:292–8. https://doi.org/10.1016/j.autrev.2013.10.015 .
doi: 10.1016/j.autrev.2013.10.015
Egerer, K, Roggenbuck, D, Hiemann, R, Weyer, MG, Buttner, T, Radau, B, et al.. Automated evaluation of autoantibodies on human epithelial-2 cells as an approach to standardize cell-based immunofluorescence tests. Arthritis Res Ther 2010;12:R40. https://doi.org/10.1186/ar2949 .
doi: 10.1186/ar2949
Bentow, C, Lakos, G, Rosenblum, R, Bryant, C, Seaman, A, Mahler, M. Clinical performance evaluation of a novel, automated chemiluminescent immunoassay, QUANTA flash CTD screen plus. Immunol Res 2015;61:110–6. https://doi.org/10.1007/s12026-014-8601-5 .
doi: 10.1007/s12026-014-8601-5
Yoo, IY, Oh, JW, Cha, HS, Koh, EM, Kang, ES. Performance of an automated fluorescence antinuclear antibody image analyzer. Ann Lab Med 2017;37:240–7. https://doi.org/10.3343/alm.2017.37.3.240 .
doi: 10.3343/alm.2017.37.3.240
Melegari, A, Bonaguri, C, Russo, A, Luisita, B, Trenti, T, Lippi, G. A comparative study on the reliability of an automated system for the evaluation of cell-based indirect immunofluorescence. Autoimmun Rev 2012;11:713–6. https://doi.org/10.1016/j.autrev.2011.12.010 .
doi: 10.1016/j.autrev.2011.12.010
Voigt, J, Krause, C, Rohwader, E, Saschenbrecker, S, Hahn, M, Danckwardt, M, et al.. Automated indirect immunofluorescence evaluation of antinuclear autoantibodies on HEp-2 cells. Clin Dev Immunol 2012;2012:651058. https://doi.org/10.1155/2012/651058 .
doi: 10.1155/2012/651058
Loock, CD, Egerer, K, Feist, E, Burmester, GR. Automated evaluation of ANA under real-life conditions. RMD Open 2017;3:e000409. https://doi.org/10.1136/rmdopen-2016-000409 .
doi: 10.1136/rmdopen-2016-000409
Lutteri, L, Dierge, L, Pesser, M, Watrin, P, Cavalier, E. A paperless autoimmunity laboratory: myth or reality? Ann Biol Clin 2016;74:477–89. https://doi.org/10.1684/abc.2016.1164 .
doi: 10.1684/abc.2016.1164
Hayashi, N, Saegusa, J, Uto, K, Oyabu, C, Saito, T, Sato, I, et al.. Evaluation of a computer-aided microscope system and its anti-nuclear antibody test kit for indirect immunofluorescence assay (English abstract). Rinsho Byori Japanese J Clin Pathol 2016;64:142–51.
Bossuyt, X, Cooreman, S, De Baere, H, Verschueren, P, Westhovens, R, Blockmans, D, et al.. Detection of antinuclear antibodies by automated indirect immunofluorescence analysis. Clin Chim Acta 2013;415:101–6. https://doi.org/10.1016/j.cca.2012.09.021 .
doi: 10.1016/j.cca.2012.09.021
Copple, SS, Jaskowski, TD, Giles, R, Hill, HR. Interpretation of ANA indirect immunofluorescence test outside the darkroom using NOVA view compared to manual microscopy. J Immunol Res 2014;2014:149316. https://doi.org/10.1155/2014/149316 .
doi: 10.1155/2014/149316
Zheng, B, Li, E, Zhu, H, Lu, J, Shi, X, Zhang, J, et al.. Automated antinuclear immunofluorescence antibody analysis is a reliable approach in routine clinical laboratories. Clin Chem Lab Med 2017;55:1922–30. https://doi.org/10.1515/cclm-2017-0050 .
doi: 10.1515/cclm-2017-0050
Schouwers, S, Bonnet, M, Verschueren, P, Westhovens, R, Blockmans, D, Marien, G, et al.. Value-added reporting of antinuclear antibody testing by automated indirect immunofluorescence analysis. Clin Chem Lab Med 2014;52:547–51. https://doi.org/10.1515/cclm-2013-0610 .
doi: 10.1515/cclm-2013-0610
Kivity, S, Gilburd, B, Agmon-Levin, N, Carrasco, MG, Tzafrir, Y, Sofer, Y, et al.. A novel automated indirect immunofluorescence autoantibody evaluation. Clin Rheumatol 2012;31:503–9. https://doi.org/10.1007/s10067-011-1884-1 .
doi: 10.1007/s10067-011-1884-1
Kim, J, Lee, W, Kim, GT, Kim, HS, Ock, S, Kim, IS, et al.. Diagnostic utility of automated indirect immunofluorescence compared to manual indirect immunofluorescence for anti-nuclear antibodies in patients with systemic rheumatic diseases: a systematic review and meta-analysis. Semin Arthritis Rheum 2019;48:728–35. https://doi.org/10.1016/j.semarthrit.2018.03.015 .
doi: 10.1016/j.semarthrit.2018.03.015
Van Hoovels, L, Schouwers, S, Van den Bremt, S, Bogaert, L, Vandeputte, N, Vercammen, M, et al.. Analytical performance of the single well titer function of NOVA View®: good enough to omit ANA IIF titer analysis? Clin Chem Lab Med 2018;56:258–61. https://doi.org/10.1515/cclm-2018-0338 .
doi: 10.1515/cclm-2018-0338
Van Hoovels, L, Schouwers, S, Van den Bremt, S, Bossuyt, X. Variation in antinuclear antibody detection by automated indirect immunofluorescence analysis. Ann Rheum Dis 2019;78:e48. https://doi.org/10.1136/annrheumdis-2018-213543 .
doi: 10.1136/annrheumdis-2018-213543
Roggenbuck, D, Hiemann, R, Schierack, P, Reinhold, D, Conrad, K. Digital immunofluorescence enables automated detection of antinuclear antibody endpoint titers avoiding serial dilution. Clin Chem Lab Med 2014;52:e9–11. https://doi.org/10.1515/cclm-2013-0543 .
doi: 10.1515/cclm-2013-0543
Oyaert, M, Bossuyt, X, Ravelingien, I, Van Hoovels, L. Added value of indirect immunofluorescence intensity of automated antinuclear antibody testing in a secondary hospital setting. Clin Chem Lab Med 2016;54:e63–6. https://doi.org/10.1515/cclm-2015-0887 .
doi: 10.1515/cclm-2015-0887
Van Hoovels, L, Bossuyt, X, Manfredi, M, Grossi, V, Benucci, M, Van Den Bremt, S, et al.. Integrating quality assurance in autoimmunity: the changing face of the automated ANA IIF test. Clin Chem Lab Med 2021;59:1247–55. https://doi.org/10.1515/cclm-2020-1669 .
doi: 10.1515/cclm-2020-1669
Bogaert, L, Van den Bremt, S, Schouwers, S, Bossuyt, X, Van Hoovels, L. Harmonizing by reducing inter-run variability: performance evaluation of a quality assurance program for antinuclear antibody detection by indirect immunofluorescence. Clin Chem Lab Med 2019;57:990–8. https://doi.org/10.1515/cclm-2018-0933 .
doi: 10.1515/cclm-2018-0933
Van den Bremt, S, Schouwers, S, Van Blerk, M, Van Hoovels, L. ANA IIF automation: moving towards harmonization? Results of a multicenter study. J Immunol Res 2017;2017:6038137. https://doi.org/10.1155/2017/6038137 .
doi: 10.1155/2017/6038137
Maenhout, TM, Bonroy, C, Verfaillie, C, Stove, V, Devreese, K. Automated indirect immunofluorescence microscopy enables the implementation of a quantitative internal quality control system for anti-nuclear antibody (ANA) analysis. Clin Chem Lab Med 2014;52:989–98. https://doi.org/10.1515/cclm-2013-0912 .
doi: 10.1515/cclm-2013-0912
International Organization for Standardization . EN-ISO 15189: 2012. Medical laboratories – requirements for quality and competence . Geneva, Switzerland: EN-ISO 15189; 2012.
Sack, U, Bossuyt, X, Andreeva, H, Antal-Szalmas, P, Bizzaro, N, Bogdanos, D, et al.. Quality and best practice in medical laboratories: specific requests for autoimmunity testing. Auto Immun Highlights 2020;11:12. https://doi.org/10.1186/s13317-020-00134-0 .
doi: 10.1186/s13317-020-00134-0
Dellavance, A, Andrade, L. Detection of autoantibodies by indirect immunofluorescence cytochemistry on HEp-2 cells. In: Houen, G, editor. Autoantibodies. Methods in Molecular biology , vol 1901. Humana Press, Springer Nature, New York, NY. 2019:19–46 pp.
Higgins, V, Augustin, R, Kulasingam, V, Taher, J. Sample stability of autoantibodies: a tool for laboratory quality initiatives. Clin Biochem 2021;96:43–8. https://doi.org/10.1016/j.clinbiochem.2021.06.003 .
doi: 10.1016/j.clinbiochem.2021.06.003
Sack, U, Conrad, K, Csernok, E, Frank, I, Hiepe, F, Krieger, T, et al.. Autoantibody detection using indirect immunofluorescence on HEp-2 cells. Ann N Y Acad Sci 2009;1173:166–73. https://doi.org/10.1111/j.1749-6632.2009.04735.x .
doi: 10.1111/j.1749-6632.2009.04735.x
Westgard, JO, Barry, PL, Hunt, MR, Groth, T. A multi-rule Shewhart chart for quality control in clinical chemistry. Clin Chem 1981;27:493–501. https://doi.org/10.1093/clinchem/27.3.493 .
doi: 10.1093/clinchem/27.3.493
Comité Français d’Accréditation . Guide technique d’accréditation de vérification (portée A)/validation (portée B) des methodes en biologie médicale. Document SH GTA 04-Révison 01 . Paris, France: COFRAC; 2015.
Van Blerk, M, Van Campenhout, C, Bossuyt, X, Duchateau, J, Humbel, R, Servais, G, et al.. Current practices in antinuclear antibody testing: results from the Belgian External Quality Assessment Scheme. Clin Chem Lab Med 2009;47:102–8. https://doi.org/10.1515/cclm.2009.021 .
doi: 10.1515/cclm.2009.021
Rigon, A, Soda, P, Zennaro, D, Iannello, G, Afeltra, A. Indirect immunofluorescence in autoimmune diseases: assessment of digital images for diagnostic purpose. Cytometry B Clin Cytom 2007;72:472–7. https://doi.org/10.1002/cyto.b.20356 .
doi: 10.1002/cyto.b.20356
Pham, BN, Albarede, S, Guyard, A, Burg, E, Maisonneuve, P. Impact of external quality assessment on antinuclear antibody detection performance. Lupus 2005;14:113–9. https://doi.org/10.1191/0961203305lu2069oa .
doi: 10.1191/0961203305lu2069oa
Copple, SS, Giles, SR, Jaskowski, TD, Gardiner, AE, Wilson, AM, Hill, HR. Screening for IgG antinuclear autoantibodies by HEp-2 indirect fluorescent antibody assays and the need for standardization. Am J Clin Pathol 2012;137:825–30. https://doi.org/10.1309/ajcpicnfg7uces1s .
doi: 10.1309/ajcpicnfg7uces1s
Silva, MJ, Dellavance, A, Baldo, DC, Rodrigues, SH, Grecco, M, Prado, MS, et al.. Interkit reproducibility of the indirect immunofluorescence assay on HEp-2 cells depends on the immunofluorescence reactivity intensity and pattern. Front Immunol 2022;12:798322. https://doi.org/10.3389/fimmu.2021.798322 .
doi: 10.3389/fimmu.2021.798322
CLSI EP26-A . User evaluation of between-reagent lot variation. Approved guideline . Wayne, PA, USA: Clinical and Laboratory Standards Institute; 2013.
Thompson, S, Chesher, D. Lot-to-lot variation. Clin Biochem Rev 2018;39:51–60.
Sandberg, S, Fraser, CG, Horvath, ER, Jansen, R, JonesOosterhuis, GW, Petersen, PH, et al.. Defining analytical performance specifications: consensus statement from the 1st strategic conference of the European federation of clinical chemistry and laboratory medicine. Clin Chem Lab Med 2015;53:833–5. https://doi.org/10.1515/cclm-2015-0067 .
doi: 10.1515/cclm-2015-0067
Damoiseaux, J, Vulsteke, JB, Tseng, CW, Platteel, ACM, Piette, Y, Shovman, O, et al.. Autoantibodies in idiopathic inflammatory myopathies: clinical associations and laboratory evaluation by mono- and multispecific immunoassays. Autoimmun Rev 2019;18:293–305. https://doi.org/10.1016/j.autrev.2018.10.004 .
doi: 10.1016/j.autrev.2018.10.004
World Health Organization . WHO BS/95.1793. Glossary of terms for biological substances used for texts of the requirements . Geneva Switzerland: World Health Organization Expert Committee on Standardization WHO; 1995.
European parliament, Council of the European Union . Directive 98/79/EC of the European Parliament and of the Council of 27 October 1998 on in vitro diagnostic medical devices. Off J Eur Communities 1998;331:1–37.
Sarewitz, SJ. CAP accreditation requirements for validation of laboratory tests. 2013. Available from: http://webapps.cap.org/apps/docs/education/lapaudio/pdf/011613.presentation.pdf .
Regulation (EU) 2017/746 on in vitro diagnostic medical devices and repealing Directive 98/79/EC and Commission Decision 2010/227/EU . The European Parliament and the council of the European Union; 2017, 117:176–332 pp.
Joint Committee for Guides in Metrology . JCGM 200:2012: international vocabulary of metrology – Basic and general concepts and associated terms (VIM) . Sèvres cedex: JCGM; 2012.
International Organization for Standardization . ISO 9000:2005 quality management systems – fundamentals and vocabulary . Geneva, Switzerland: ISO; 2005.
CAP – all common checklist . Northfield: College of American Pathologists; 2017.
Nederlandse Vereniging voor Klinische Chemie en Laboratoriumgeneeskunde . NVKC richtlijn Validatie en Verificatie van onderzoeksprocedures . The Netherlands: NVKC; 2021.
Commissie voor Klinische Biologie . Praktijkrichtlijn voor het opzetten van een kwaliteitshandboek in de erkende laboratoria voor klinische biologie werkzaam binnen het kader van het Erkenningsbesluit. Versie 3. Belgium . Commissie voor Klinische Biologie; 2017.
Clinical and Laboratory Standards Institute . CLSI EP15-A3: user verification of precision and estimation of Bias. Approved guideline , 3rd ed. Wayne, PA, USA: CLSI; 2014.
Clinical and Laboratory Standards Institute . CLSI EP12-A2: user protocol for evaluation of qualitative test performance. Approved guideline , 2nd ed. Wayne, PA, USA: CLSI; 2008.
Pum, J. A practical guide to validation and verification of analytical methods in the clinical laboratory. Adv Clin Chem 2019;90:215–81. https://doi.org/10.1016/bs.acc.2019.01.006 .
doi: 10.1016/bs.acc.2019.01.006
Pum, JKW. Evaluation of analytical performance of qualitative and semi-quantitative assays in the clinical laboratory. Clin Chim Acta 2019;497:197–203. https://doi.org/10.1016/j.cca.2019.07.018 .
doi: 10.1016/j.cca.2019.07.018
Mulder, L, van der Molen, R, Koelman, C, van Leeuwen, E, Roos, A, Damoiseaux, J. Validation conform ISO-15189 of assays in the field of autoimmunity: joint efforts in The Netherlands. Autoimmun Rev 2018;17:513–7. https://doi.org/10.1016/j.autrev.2018.03.004 .
doi: 10.1016/j.autrev.2018.03.004
Munujos, J. Autoimmune diagnostics by immune-fluorescence: variability and harmonization. Clin Lab Int 2016:38–41.
Wener, MH, Fink, S, Bashleben, C, Sindelar, S, Linden, MA. Long-term variability in immunofluorescence titer of antibodies to nuclear antigens observed in clinical laboratory proficiency testing surveys. Arch Pathol Lab Med 2021;145:937–42. https://doi.org/10.5858/arpa.2020-0419-CP .
doi: 10.5858/arpa.2020-0419-CP
McHugh, ML. Interrater reliability: the kappa statistic. Biochem Med 2012;22:276–82. https://doi.org/10.11613/bm.2012.031 .
doi: 10.11613/bm.2012.031
Senant, M, Musset, L, Chyderiotis, G, Guis-Cabanne, L, Damoiseaux, J, Fabien, N, et al.. Precision of autoantibody assays in clinical diagnostic laboratories: what is the reality? Clin Biochem 2020;83:57–64. https://doi.org/10.1016/j.clinbiochem.2020.05.019 .
doi: 10.1016/j.clinbiochem.2020.05.019
Clinical and Laboratory Standards Institute . CLSI EP05-A3: evaluation of precision of quantitative measurement procedures. Approved guideline , 3rd ed. Wayne, PA, USA: CLSI; 2014.
Antonelli, G, Padoan, A, Aita, A, Sciacovelli, L, Plebani, M. Verification of examination procedures in clinical laboratory for imprecision, trueness and diagnostic accuracy according to ISO 15189:2012: a pragmatic approach. Clin Chem Lab Med 2017;55:1501–8. https://doi.org/10.1515/cclm-2016-0894 .
doi: 10.1515/cclm-2016-0894
Jacobs, JF, van der Molen, RG, Bossuyt, X, Damoiseaux, J. Antigen excess in modern immunoassays: to anticipate on the unexpected. Autoimmun Rev 2015;14:160–7. https://doi.org/10.1016/j.autrev.2014.10.018 .
doi: 10.1016/j.autrev.2014.10.018
Bossuyt, X, Marien, G, Vanderschueren, S. A 67-year-old woman with a systemic inflammatory syndrome and sicca. Clin Chem 2010;56:1508–9. https://doi.org/10.1373/clinchem.2010.150789 .
doi: 10.1373/clinchem.2010.150789
Ma, WT, Chang, C, Gershwin, ME, Lian, ZX. Development of autoantibodies precedes clinical manifestations of autoimmune diseases: a comprehensive review. J Autoimmun 2017;83:95–112. https://doi.org/10.1016/j.jaut.2017.07.003 .
doi: 10.1016/j.jaut.2017.07.003