Rifampin monotherapy for children with idiopathic infantile hypercalcemia.
CYP24A1
Idiopathic infantile hypercalcemia
Rifampin
Vitamin D
Journal
The Journal of steroid biochemistry and molecular biology
ISSN: 1879-1220
Titre abrégé: J Steroid Biochem Mol Biol
Pays: England
ID NLM: 9015483
Informations de publication
Date de publication:
07 2023
07 2023
Historique:
received:
30
01
2023
revised:
09
03
2023
accepted:
26
03
2023
medline:
9
6
2023
pubmed:
30
3
2023
entrez:
29
3
2023
Statut:
ppublish
Résumé
Idiopathic Infantile Hypercalcemia (IIH) is characterized by hypercalcemia and hypercalciuria owing to PTH-independent increases in circulating concentrations of 1,25(OH)2D. At least 3 forms of IHH can be distinguished genetically and mechanistically: infantile hypercalcemia-1 (Hypercalcemia, Infantile, 1; HCINF1) due to CYP24A1 mutations results in decreased inactivation of 1,25(OH)2D; HCINF2 due to SLC34A1 mutations results in excessive 1,25(OH)2D production; and HCINF3 in which a variety of gene variants of uncertain significance (VUS) have been identified and where the mechanism for increased 1,25 (OH)2D is unclear. Conventional management with dietary calcium and vitamin D restriction has only limited success. Induction of the P450 enzyme CYP3A4 by rifampin can provide an alternate pathway for inactivation of 1,25(OH)2D that is useful in HCINF1 and may be effective in other forms of IIH. We sought to assess the efficacy of rifampin to decrease levels of serum 1,25(OH)2D and calcium, and urinary calcium concentrations in subjects with HCINF3, and to compare the response to a control subject with HCINF1. Four subjects with HCINF3 and the control subject with HCINF1 completed the study using rifampin 5 mg/kg/day and 10 mg/kg/day each for 2 months separated by a 2-month washout period. Patients had age-appropriate intake of dietary calcium plus 200 IU vitamin D/day. Primary outcome was efficacy of rifampin to lower serum concentrations of 1,25(OH)2D. The secondary outcomes included the reduction of serum calcium, urinary calcium excretion (as random urine calcium: creatinine (ca:cr) ratio) and serum 1,25(OH)2D/PTH ratio. Rifampin was well tolerated and induced CYP3A4 at both doses in all subjects. The control subject with HCINF1 showed significant response to both rifampin doses with decreases in the serum concentration of 1,25(OH)2D and the 1,25(OH)2D/PTH ratio while the serum and urine ca:cr levels were unchanged. The four patients with HCINF3 showed reductions in 1,25(OH)2D and urinary ca:cr after 10 mg/kg/d, but hypercalcemia did not improve and there were variable responses in 1,25(OH)2D/PTH ratios. These results support further longer-term studies to clarify the usefulness of rifampin as a medical therapy for IIH.
Identifiants
pubmed: 36990163
pii: S0960-0760(23)00056-0
doi: 10.1016/j.jsbmb.2023.106301
pmc: PMC10441173
mid: NIHMS1918779
pii:
doi:
Substances chimiques
Calcium
SY7Q814VUP
Rifampin
VJT6J7R4TR
Calcium, Dietary
0
Cytochrome P-450 CYP3A
EC 1.14.14.1
Vitamin D
1406-16-2
Vitamin D3 24-Hydroxylase
EC 1.14.15.16
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
106301Subventions
Organisme : NIDDK NIH HHS
ID : R01 DK112955
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM063666
Pays : United States
Informations de copyright
Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of competing interest None.
Références
Clin Lab. 2012;58(5-6):403-10
pubmed: 22783568
J Pediatr. 2010 Aug;157(2):296-302
pubmed: 20394945
Clin Kidney J. 2015 Aug;8(4):453-5
pubmed: 26251716
Anal Biochem. 2011 Nov 1;418(1):126-33
pubmed: 21784054
Lancet. 1953 Aug 1;265(6779):255-6
pubmed: 13070618
J Am Soc Nephrol. 2016 Feb;27(2):604-14
pubmed: 26047794
J Am Soc Nephrol. 2014 Oct;25(10):2366-75
pubmed: 24700880
N Engl J Med. 2011 Aug 4;365(5):410-21
pubmed: 21675912
Endocrinology. 2000 Jul;141(7):2658-66
pubmed: 10875271
Bone. 2015 Dec;81:89-96
pubmed: 26117226
J Clin Endocrinol Metab. 2016 Feb;101(2):394-415
pubmed: 26745253
J Clin Endocrinol Metab. 2017 May 1;102(5):1440-1446
pubmed: 28324001
Lancet. 1954 Jul 17;267(6829):110-4
pubmed: 13175473
Clin Biochem. 2013 Sep;46(13-14):1195-6
pubmed: 23973108
Front Pediatr. 2018 Mar 07;6:47
pubmed: 29564324
Am J Kidney Dis. 2015 Jan;65(1):122-6
pubmed: 25446019
Clin Kidney J. 2013 Apr;6(2):211-215
pubmed: 24175086
Pediatr Nephrol. 1997 Feb;11(1):2-6
pubmed: 9035162
J Bone Miner Res. 2013 May;28(5):1101-16
pubmed: 23212742
J Clin Endocrinol Metab. 2021 Sep 27;106(10):2915-2937
pubmed: 34125233
J Clin Invest. 2018 May 1;128(5):1913-1918
pubmed: 29461981
Urolithiasis. 2020 Feb;48(1):19-26
pubmed: 31696245
J Bone Miner Res. 2017 Jul;32(7):1589-1596
pubmed: 28304097
J Urol. 2013 Aug;190(2):552-7
pubmed: 23470222
Urology. 2010 Jun;75(6):1294-8
pubmed: 19914693
J Clin Invest. 2006 Jun;116(6):1703-12
pubmed: 16691293
J Pediatr. 1984 Nov;105(5):771-3
pubmed: 6502307
Mol Pharmacol. 2012 Apr;81(4):498-509
pubmed: 22205755
Am J Respir Crit Care Med. 2015 May 1;191(9):1058-65
pubmed: 25654354
J Clin Endocrinol Metab. 2021 Sep 27;106(10):2938-2948
pubmed: 34139759
Pediatr Nephrol. 2006 Nov;21(11):1676-80
pubmed: 16932902
J Clin Endocrinol Metab. 2022 Jul 14;107(8):e3159-e3166
pubmed: 35569070
Mol Pharmacol. 2006 Jan;69(1):56-65
pubmed: 16207822
Br J Nutr. 2010 Feb;103(4):575-80
pubmed: 19852873