Varicella Zoster Virus infects mucosal associated Invariant T cells.
MAIT cells
Varicella Zoster Virus
herpesvirus
innate-like T cells
productive infection
Journal
Frontiers in immunology
ISSN: 1664-3224
Titre abrégé: Front Immunol
Pays: Switzerland
ID NLM: 101560960
Informations de publication
Date de publication:
2023
2023
Historique:
received:
12
12
2022
accepted:
06
03
2023
medline:
4
4
2023
entrez:
3
4
2023
pubmed:
4
4
2023
Statut:
epublish
Résumé
Mucosal Associated Invariant T (MAIT) cells are innate-like T cells that respond to conserved pathogen-derived vitamin B metabolites presented by the MHC class I related-1 molecule (MR1) antigen presentation pathway. Whilst viruses do not synthesize these metabolites, we have reported that varicella zoster virus (VZV) profoundly suppresses MR1 expression, implicating this virus in manipulation of the MR1:MAIT cell axis. During primary infection, the lymphotropism of VZV is likely to be instrumental in hematogenous dissemination of virus to gain access to cutaneous sites where it clinically manifests as varicella (chickenpox). However, MAIT cells, which are found in the blood and at mucosal and other organ sites, have yet to be examined in the context of VZV infection. The goal of this study was to examine any direct impact of VZV on MAIT cells. Using flow cytometry, we interrogated whether primary blood derived MAIT cells are permissive to infection by VZV whilst further analysing differential levels of infection between various MAIT cell subpopulations. Changes in cell surface extravasation, skin homing, activation and proliferation markers after VZV infection of MAIT cells was also assessed via flow cytometry. Finally the capacity of MAIT cells to transfer infectious virus was tested through an infectious center assay and imaged via fluorescence microscopy. We identify primary blood-derived MAIT cells as being permissive to VZV infection. A consequence of VZV infection of MAIT cells was their capacity to transfer infectious virus to other permissive cells, consistent with MAIT cells supporting productive infection. When subgrouping MAIT cells by their co- expression of a variety cell surface markers, there was a higher proportion of VZV infected MAIT cells co-expressing CD4+ and CD4+/CD8+ MAIT cells compared to the more phenotypically dominant CD8+ MAIT cells, whereas infection was not associated with differences in co-expression of CD56 (MAIT cell subset with enhanced responsiveness to innate cytokine stimulation), CD27 (co-stimulatory) or PD-1 (immune checkpoint). Infected MAIT cells retained high expression of CCR2, CCR5, CCR6, CLA and CCR4, indicating a potentially intact capacity for transendothelial migration, extravasation and trafficking to skin sites. Infected MAIT cells also displayed increased expression of CD69 (early activation) and CD71 (proliferation) markers. These data identify MAIT cells as being permissive to VZV infection and identify impacts of such infection on co- expressed functional markers.
Identifiants
pubmed: 37006246
doi: 10.3389/fimmu.2023.1121714
pmc: PMC10063790
doi:
Substances chimiques
Histocompatibility Antigens Class I
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1121714Informations de copyright
Copyright © 2023 Purohit, Corbett, Slobedman and Abendroth.
Déclaration de conflit d'intérêts
AC is an inventor on patents describing MR1-tetramers. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The reviewer LH declared a shared affiliation with the author AC to the handling editor at time of review.
Références
Nat Immunol. 2016 May;17(5):531-7
pubmed: 27043408
Elife. 2018 Feb 22;7:
pubmed: 29469805
J Immunol. 2000 Aug 15;165(4):1755-61
pubmed: 10925252
J Autoimmun. 2016 Jun;70:80-90
pubmed: 27068801
Cell Rep. 2014 Jul 24;8(2):633-45
pubmed: 25043183
Eur J Haematol. 1991 Aug;47(2):140-5
pubmed: 1889482
J Virol. 2002 Nov;76(22):11425-33
pubmed: 12388703
PLoS One. 2010 Jun 25;5(6):e11327
pubmed: 20593027
Nat Rev Immunol. 2020 Jan;20(1):55-70
pubmed: 31406325
Australas J Dermatol. 2017 Aug;58(3):200-204
pubmed: 26940855
Clin Microbiol Rev. 1996 Jul;9(3):361-81
pubmed: 8809466
Immunogenetics. 2016 Aug;68(8):515-23
pubmed: 27470004
PLoS Pathog. 2019 Mar 14;15(3):e1007650
pubmed: 30870532
J Virol. 2009 Apr;83(8):3904-18
pubmed: 19193797
PLoS Negl Trop Dis. 2018 Jan 22;12(1):e0006154
pubmed: 29357366
Immunity. 2013 Dec 12;39(6):1043-56
pubmed: 24315998
J Allergy Clin Immunol. 2018 Jun;141(6):2182-2195.e6
pubmed: 28870466
Front Microbiol. 2020 Jun 26;11:1224
pubmed: 32676054
Clin Exp Dermatol. 2004 Nov;29(6):658-63
pubmed: 15550147
Immunol Cell Biol. 2018 May;96(5):507-525
pubmed: 29437263
Nat Immunol. 2021 Mar;22(3):322-335
pubmed: 33531712
J Virol. 2001 Jul;75(13):6183-92
pubmed: 11390620
Proc Natl Acad Sci U S A. 1983 Jun;80(11):3494-8
pubmed: 6304712
Biochem Biophys Res Commun. 2022 Jul 12;613:41-46
pubmed: 35526487
Virology. 1994 Feb;198(2):690-702
pubmed: 8291250
Curr Opin Pharmacol. 2005 Aug;5(4):431-7
pubmed: 15955740
Methods. 2015 Nov 15;90:85-94
pubmed: 26213183
Eur J Immunol. 2016 Jul;46(7):1600-14
pubmed: 27105778
Immunol Today. 1983 Dec;4(12):347-51
pubmed: 25290935
J Exp Med. 2022 Sep 5;219(9):
pubmed: 36018322
Proc Natl Acad Sci U S A. 2017 Jul 3;114(27):E5434-E5443
pubmed: 28630305
Nat Commun. 2018 Nov 9;9(1):4706
pubmed: 30413689
J Exp Med. 1999 Jun 21;189(12):1907-21
pubmed: 10377186
Proc Natl Acad Sci U S A. 2006 May 16;103(20):7765-70
pubmed: 16682635
Mucosal Immunol. 2017 Jan;10(1):58-68
pubmed: 27143301
Semin Immunol. 2001 Feb;13(1):27-39
pubmed: 11289797
Proc Soc Exp Biol Med. 1953 Jun;83(2):340-6
pubmed: 13064265
Nat Commun. 2013;4:2142
pubmed: 23846752
Eur J Immunol. 2015 Aug;45(8):2286-98
pubmed: 26046663
Biochem Biophys Res Commun. 2022 Jun 4;607:67-72
pubmed: 35367830
J Biol Chem. 2004 Oct 8;279(41):43117-25
pubmed: 15292262
PLoS Pathog. 2018 Apr 30;14(4):e1006999
pubmed: 29709039
J Exp Med. 2004 Oct 4;200(7):917-25
pubmed: 15452178
J Biol Chem. 2011 May 20;286(20):17921-33
pubmed: 21385879
J Virol. 2016 Jan 20;90(7):3284-7
pubmed: 26792747
Nature. 2012 Nov 29;491(7426):717-23
pubmed: 23051753
J Exp Med. 2014 Jul 28;211(8):1585-600
pubmed: 25049336
J Infect Dis. 2023 Feb 1;227(3):391-401
pubmed: 34648018
Nat Commun. 2016 Jun 23;7:11653
pubmed: 27337592
J Immunol. 1997 Jan 1;158(1):512-7
pubmed: 8977229
J Virol. 2010 Apr;84(8):4060-72
pubmed: 20130046
Eur J Immunol. 2014 Jan;44(1):195-203
pubmed: 24019201
Proc Natl Acad Sci U S A. 2016 Apr 26;113(17):E2403-12
pubmed: 27078099
Cell Rep. 2019 Sep 17;28(12):3061-3076.e5
pubmed: 31533031
Curr Top Microbiol Immunol. 2010;342:155-71
pubmed: 20563710
Nature. 2003 Mar 13;422(6928):164-9
pubmed: 12634786
Proc Natl Acad Sci U S A. 2018 Dec 4;115(49):E11513-E11522
pubmed: 30442667
Biochem Biophys Res Commun. 1997 Aug 28;237(3):504-11
pubmed: 9299393
J Virol. 2015 Feb;89(4):2149-56
pubmed: 25473050
Cell Rep. 2019 Sep 17;28(12):3077-3091.e5
pubmed: 31533032
Br J Haematol. 1983 Sep;55(1):93-101
pubmed: 6882692
Nat Genet. 2016 Jan;48(1):74-8
pubmed: 26642240
J Virol. 2019 Jan 17;93(3):
pubmed: 30404793
Nature. 2014 May 15;509(7500):361-5
pubmed: 24695216
J Infect Dis. 2021 Feb 24;223(4):667-672
pubmed: 32623457
Sci Immunol. 2020 Sep 28;5(51):
pubmed: 32989174
PLoS Pathog. 2019 Jun 13;15(6):e1007784
pubmed: 31194857
Mucosal Immunol. 2015 Mar;8(2):429-40
pubmed: 25269706
Cell Rep. 2019 Sep 17;28(12):3249-3262.e5
pubmed: 31533045
Blood. 2011 Jan 27;117(4):1250-9
pubmed: 21084709