Enabling cryo-EM density interpretation from yeast native cell extracts by proteomics data and AlphaFold structures.

AI-guided computational analysis cryo-EM homogenates protein structure prediction structural proteomics

Journal

Proteomics
ISSN: 1615-9861
Titre abrégé: Proteomics
Pays: Germany
ID NLM: 101092707

Informations de publication

Date de publication:
09 2023
Historique:
revised: 23 03 2023
received: 14 09 2022
accepted: 24 03 2023
medline: 6 9 2023
pubmed: 5 4 2023
entrez: 4 4 2023
Statut: ppublish

Résumé

In the cellular context, proteins participate in communities to perform their function. The detection and identification of these communities as well as in-community interactions has long been the subject of investigation, mainly through proteomics analysis with mass spectrometry. With the advent of cryogenic electron microscopy and the "resolution revolution," their visualization has recently been made possible, even in complex, native samples. The advances in both fields have resulted in the generation of large amounts of data, whose analysis requires advanced computation, often employing machine learning approaches to reach the desired outcome. In this work, we first performed a robust proteomics analysis of mass spectrometry (MS) data derived from a yeast native cell extract and used this information to identify protein communities and inter-protein interactions. Cryo-EM analysis of the cell extract provided a reconstruction of a biomolecule at medium resolution (∼8 Å (FSC = 0.143)). Utilizing MS-derived proteomics data and systematic fitting of AlphaFold-predicted atomic models, this density was assigned to the 2.6 MDa complex of yeast fatty acid synthase. Our proposed workflow identifies protein complexes in native cell extracts from Saccharomyces cerevisiae by combining proteomics, cryo-EM, and AI-guided protein structure prediction.

Identifiants

pubmed: 37016452
doi: 10.1002/pmic.202200096
doi:

Substances chimiques

Cell Extracts 0
Proteins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2200096

Informations de copyright

© 2023 The Authors. Proteomics published by Wiley-VCH GmbH.

Références

Brown, G. C. (1991). Total cell protein concentration as an evolutionary constraint on the metabolic control distribution in cells. Journal of Theoretical Biology, 153(2), 195-203. https://doi.org/10.1016/s0022-5193(05)80422-9
Götze, M., Iacobucci, C., Ihling, C. H., & Sinz, A. (2019). A simple cross-linking/mass spectrometry workflow for studying system-wide protein interactions. Analytical Chemistry, 91(15), 10236-10244. https://doi.org/10.1021/acs.analchem.9b02372
O'reilly, F. J., & Rappsilber, J. (2018). Cross-linking mass spectrometry: methods and applications in structural, molecular and systems biology. Nature Structural & Molecular Biology, 25(11), 1000-1008. https://doi.org/10.1038/s41594-018-0147-0
Piersimoni, L., Kastritis, P. L., Arlt, C., & Sinz, A. (2022). Cross-linking mass spectrometry for investigating protein conformations and protein-protein interactions─A method for all seasons. Chem. Rev., 122(8), 7500-7531. https://doi.org/10.1021/acs.chemrev.1c00786
Turk, M., & Baumeister, W. (2020). The promise and the challenges of cryo-electron tomography. Febs Letters, 594(20), 3243-3261. https://doi.org/10.1002/1873-3468.13948
O'reilly, F. J., Xue, L., Graziadei, A., Sinn, L., Lenz, S., Tegunov, D., Blötz, C., Singh, N., Hagen, W. J. H., Cramer, P., Stülke, J., Mahamid, J., & Rappsilber, J. (2020). In-cell architecture of an actively transcribing-translating expressome. Science, 369(6503), 554-557. https://doi.org/10.1126/science.abb3758
Mosalaganti, S., Obarska-Kosinska, A., Siggel, M., Taniguchi, R., Turonová, B., Zimmerli, C E., Buczak, K., Schmidt, F. H., Margiotta, E., Mackmull, M.-T., Hagen, W. J. H., Hummer, G., Kosinski, J., & Beck, M. (2022). AI-based structure prediction empowers integrative structural analysis of human nuclear pores. Science, 376(6598), eabm9506. https://doi.org/10.1126/science.abm9506
Kyrilis, F. L., Semchonok, D. A., Skalidis, I., Tüting, C., Hamdi, F., O'reilly, F. J., Rappsilber, J., & Kastritis, P. L. (2021). Integrative structure of a 10-megadalton eukaryotic pyruvate dehydrogenase complex from native cell extracts. Cell Reports, 34(6), 108727. https://doi.org/10.1016/j.celrep.2021.108727
Havugimana, P. C., Goel, R. K., Phanse, S., Youssef, A., Padhorny, D., Kotelnikov, S., Kozakov, D., & Emili, A. (2022). Scalable multiplex co-fractionation/mass spectrometry platform for accelerated protein interactome discovery. Nature Communications, 13(1), 4043. https://doi.org/10.1038/s41467-022-31809-z
Fossati, A., Li, C., Uliana, F., Wendt, F., Frommelt, F., Sykacek, P., Heusel, M., Hallal, M., Bludau, I., Capraz, T., Xue, P., Song, J., Wollscheid, B., Purcell, A. W., Gstaiger, M., & Aebersold, R. (2021). PCprophet: A framework for protein complex prediction and differential analysis using proteomic data. Nature Methods, 18(5), 520-527. https://doi.org/10.1038/s41592-021-01107-5
Sae-Lee, W., Mccafferty, C. L., Verbeke, E. J., Havugimana, P. C., Papoulas, O., Mcwhite, C. D., Houser, J. R., Vanuytsel, K., Murphy, G. J., Drew, K., Emili, A., Taylor, D. W., & Marcotte, E. M. (2022). The protein organization of a red blood cell. Cell Reports, 40(3), 111103. https://doi.org/10.1016/j.celrep.2022.111103
Gavin, A.-C., Aloy, P., Grandi, P., Krause, R., Boesche, M., Marzioch, M., Rau, C., Jensen, L. J., Bastuck, S., Dümpelfeld, B., Edelmann, A., Heurtier, M.-A., Hoffman, V., Hoefert, C., Klein, K., Hudak, M., Michon, A.-M., Schelder, M., Schirle, M., … Superti-Furga, G. (2006). Proteome survey reveals modularity of the yeast cell machinery. Nature, 440(7084), 631-636. https://doi.org/10.1038/nature04532
Gavin, A.-C., Bösche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J. M., Michon, A.-M., Cruciat, C.-M., Remor, M., Höfert, C., Schelder, M., Brajenovic, M., Ruffner, H., Merino, A., Klein, K., Hudak, M., Dickson, D., … Superti-Furga, G. (2002). Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature, 415(6868), 141-147. https://doi.org/10.1038/415141a
Srere, P. A. (1985). The Metabolon. Trends in Biochemical Sciences, 10(3), 109-110. https://doi.org/10.1016/0968-0004(85)90266-X
Kastritis, P. L., O'reilly, F. J., Bock, T., Li, Y., Rogon, M. Z., Buczak, K., Romanov, N., Betts, M. J., Bui, K. H., Hagen, W. J., Hennrich, M. L., Mackmull, M.-T., Rappsilber, J., Russell, R. B., Bork, P., Beck, M., & Gavin, A.-C. (2017). Capturing protein communities by structural proteomics in a thermophilic eukaryote. Molecular Systems Biology, 13(7), 936. https://doi.org/10.15252/msb.20167412
Kastritis, P. L., & Gavin, A.-C. (2018). Enzymatic complexes across scales. Essays in Biochemistry, 62(4), 501-514. https://doi.org/10.1042/EBC20180008
Tüting, C., Kyrilis, F. L., Müller, J., Sorokina, M., Skalidis, I., Hamdi, F., Sadian, Y., & Kastritis, P. L. (2021). Cryo-EM snapshots of a native lysate provide structural insights into a metabolon-embedded transacetylase reaction. Nature Communications, 12(1), 6933. https://doi.org/10.1038/s41467-021-27287-4
Chua, E. Y. D., Mendez, J. H., Rapp, M., Ilca, S. L., Tan, Y. Z., Maruthi, K., Kuang, H., Zimanyi, C. M., Cheng, A., Eng, E. T., Noble, A. J., Potter, C. S., & Carragher, B. (2022). Better, faster, cheaper: Recent advances in cryo-electron microscopy. Annual Review of Biochemistry, 91, 1-32. https://doi.org/10.1146/annurev-biochem-032620-110705
Kimanius, D., Dong, L., Sharov, G., Nakane, T., & Scheres, S. H. W. (2021). New tools for automated cryo-EM single-particle analysis in RELION-4.0. Biochemical Journal, 478(24), 4169-4185. https://doi.org/10.1042/BCJ20210708
Strelak, D., Jiménez-Moreno, A., Vilas, J. L., Ramírez-Aportela, E., Sánchez-García, R., Maluenda, D., Vargas, J., Herreros, D., Fernández-Giménez, E., De Isidro-Gómez, F. P., Horacek, J., Myska, D., Horacek, M., Conesa, P., Fonseca-Reyna, Y. C., Jiménez, J., Martínez, M., Harastani, M., Jonic, S., … Sorzano, C. O. S. (2021). Advances in Xmipp for cryo-electron microscopy: From Xmipp to Scipion. Molecules (Basel, Switzerland), 26(20), 6224. https://doi.org/10.3390/molecules26206224
Punjani, A., Rubinstein, J. L., Fleet, D. J., & Brubaker, M. A. (2017). cryoSPARC: Algorithms for rapid unsupervised cryo-EM structure determination. Nature Methods, 14(3), 290-296. https://doi.org/10.1038/nmeth.4169
Henderson, R. (2004). Realizing the potential of electron cryo-microscopy. Quarterly Reviews of Biophysics, 37(1), 3-13. https://doi.org/10.1017/s0033583504003920
Sigworth, F. J. (2016). Principles of cryo-EM single-particle image processing. Microscopy (Oxford), 65(1), 57-67. https://doi.org/10.1093/jmicro/dfv370
Kyrilis, F. L., Belapure, J., & Kastritis, P. L. (2021). Detecting protein communities in native cell extracts by machine learning: A structural biologist's perspective. Front. Mol. Biosci., 8, 660542. https://doi.org/10.3389/fmolb.2021.660542
Schmidt, L., Tüting, C., Kyrilis, F. L., Hamdi, F., Semchonok, D. A., Hause, G., Meister, A., Ihling, C., Shah, P. N. M., Stubbs, M. T., Sinz, A., Stuart, D. I., & Kastritis, P. L. (2022). Delineating organizational principles of the endogenous L-A virus by cryo-EM and computational analysis of native cell extracts. BioRxiv, https://doi.org/10.1101/2022.07.15.498668
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583-589. https://doi.org/10.1038/s41586-021-03819-2
Szklarczyk, D., Gable, A. L., Nastou, K. C., Lyon, D., Kirsch, R., Pyysalo, S., Doncheva, N. T., Legeay, M., Fang, T., Bork, P., Jensen, L. J., & Von Mering, C. (2021). The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic acids research, 49(D1), D605-D612. https://doi.org/10.1093/nar/gkaa1074
Hagberg, A. A., Schult, D. A., & Swart, P. J. (2008). Exploring network structure, dynamics, and function using NetworkX. Paper presented at the Proceedings of the 7th Python in Science Conference, Pasadena, CA USA. http://conference.scipy.org/proceedings/SciPy2008/paper_2/
Pettersen, E. F., Goddard, T. D., Huang, C. C., Meng, E. C., Couch, G. S., Croll, T. I., Morris, J. H., & Ferrin, T. E. (2021). UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Science, 30(1), 70-82. https://doi.org/10.1002/pro.3943
Bateman, A., Martin, M.-J., Orchard, S., Magrane, M., Agivetova, R., Ahmad, S., Alpi, E., Bowler-Barnett, E. H., Britto, R., Bursteinas, B., Bye-A-Jee, H., Coetzee, R., Cukura, A., Da Silva, A., Denny, P., Dogan, T., Ebenezer, T., Fan, J., Castro, L. G., … Teodoro, D. (2021). UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Research, 49(D1), D480-D489. https://doi.org/10.1093/nar/gkaa1100
Harris, C. R., Millman, K. J, Van Der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Van Kerkwijk, M. H., Brett, M., Haldane, A., Del Río, J. F., Wiebe, M., Peterson, P., … Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357-362. https://doi.org/10.1038/s41586-020-2649-2
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., Van Der Walt, S. J., Brett, M., Wilson, J., Millman, K. J, Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., … Vázquez-Baeza, Y. (2020). SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nature Methods, 17(3), 261-272. https://doi.org/10.1038/s41592-019-0686-2
Liebschner, D., Afonine, P. V., Baker, M. L., Bunkóczi, G., Chen, V. B., Croll, T. I., Hintze, B., Hung, L.-W., Jain, S., Mccoy, A. J., Moriarty, N. W., Oeffner, R. D., Poon, B. K., Prisant, M. G., Read, R. J., Richardson, J. S., Richardson, D. C., Sammito, M. D., Sobolev, O. V., … Adams, P. D. (2019). Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallographica Section D: Structural Biology, 75(Pt 10), 861-877. https://doi.org/10.1107/S2059798319011471
Kanehisa, M. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic acids research, 28(1), 27-30. https://doi.org/10.1093/nar/28.1.27
Cox, J., Hein, M. Y., Luber, C. A., Paron, I., Nagaraj, N., & Mann, M. (2014). Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Molecular & Cellular Proteomics, 13(9), 2513-2526. https://doi.org/10.1074/mcp.M113.031591
Hein, M. Y., Hubner, N. C., Poser, I., Cox, J., Nagaraj, N., Toyoda, Y., Gak, I. A., Weisswange, I., Mansfeld, J., Buchholz, F., Hyman, A. A., & Mann, M. (2015). A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell, 163(3), 712-723. https://doi.org/10.1016/j.cell.2015.09.053
Skalidis, I., Kyrilis, F. L., Tüting, C., Hamdi, F., Chojnowski, G., & Kastritis, P. L. (2022). Cryo-EM and artificial intelligence visualize endogenous protein community members. Structure (London, England), 30(4), 575-589.e6 e576. https://doi.org/10.1016/j.str.2022.01.001
Kyrilis, F. L., Meister, A., & Kastritis, P. L. (2019). Integrative biology of native cell extracts: A new era for structural characterization of life processes. Biological Chemistry, 400(7), 831-846. https://doi.org/10.1515/hsz-2018-0445
Lomakin, I. B., Xiong, Y., & Steitz, T. A. (2007). The crystal structure of yeast fatty acid synthase, a cellular machine with eight active sites working together. Cell, 129(2), 319-332. https://doi.org/10.1016/j.cell.2007.03.013
Wei, J., & Tong, L. (2015). Crystal structure of the 500-kDa yeast acetyl-CoA carboxylase holoenzyme dimer. Nature, 526(7575), 723-727. https://doi.org/10.1038/nature15375
Ho, Y., Gruhler, A., Heilbut, A., Bader, G. D., Moore, L., Adams, S.-L., Millar, A., Taylor, P., Bennett, K., Boutilier, K., Yang, L., Wolting, C., Donaldson, I., Schandorff, S., Shewnarane, J., Vo, M., Taggart, J., Goudreault, M., Muskat, B., … Tyers, M. (2002). Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature, 415(6868), 180-183. https://doi.org/10.1038/415180a
Chojnowski, G., Simpkin, A. J., Leonardo, D. A., Seifert-Davila, W., Vivas-Ruiz, D. E., Keegan, R. M., & Rigden, D. J. (2022). findMySequence: A neural-network-based approach for identification of unknown proteins in X-ray crystallography and cryo-EM. IUCrJ, 9(Pt 1), 86-97. https://doi.org/10.1107/S2052252521011088
Pfab, J., Phan, N. M., & Si, D. (2021). DeepTracer for fast de novo cryo-EM protein structure modeling and special studies on CoV-related complexes. Proceedings of the National Academy of Sciences of the United States of America, 118(2), e2017525118. https://doi.org/10.1073/pnas.2017525118
Jamali, K., Kimanius, D., & Scheres, S. (2022). ModelAngelo: Automated model building in cryo-EM maps. arXiv preprint, https://doi.org/10.48550/arXiv.2210.00006
Beck, M., & Baumeister, W. (2016). Cryo-electron tomography: Can it reveal the molecular sociology of cells in atomic detail? Trends in Cell Biology, 26(11), 825-837. https://doi.org/10.1016/j.tcb.2016.08.006
Erdmann, P. S., Hou, Z., Klumpe, S., Khavnekar, S., Beck, F., Wilfling, F., Plitzko, J. M., & Baumeister, W. (2021). In situ cryo-electron tomography reveals gradient organization of ribosome biogenesis in intact nucleoli. Nature Communications, 12(1), 5364. https://doi.org/10.1038/s41467-021-25413-w
Verbeke, E. J., Mallam, A. L., Drew, K., Marcotte, E. M., & Taylor, D. W. (2018). Classification of single particles from human cell extract reveals distinct structures human cell extract reveals distinct structures. Cell Reports, 24(1), 259-268.e3 e253. https://doi.org/10.1016/j.celrep.2018.06.022
Kemmerling, S., Arnold, S. A., Bircher, B. A., Sauter, N., Escobedo, C., Dernick, G., Hierlemann, A., Stahlberg, H., & Braun, T. (2013). Single-cell lysis for visual analysis by electron microscopy. Journal of Structural Biology, 183(3), 467-473. https://doi.org/10.1016/j.jsb.2013.06.012
Mund, A., Coscia, F., Kriston, A., Hollandi, R., Kovács, F., Brunner, A.-D., Migh, E., Schweizer, L., Santos, A., Bzorek, M., Naimy, S., Rahbek-Gjerdrum, L. M., Dyring-Andersen, B., Bulkescher, J., Lukas, C., Eckert, M. A., Lengyel, E., Gnann, C., Lundberg, E., … Mann, M. (2022). Deep Visual Proteomics defines single-cell identity and heterogeneity. Nature Biotechnology, 40(8), 1231-1240. https://doi.org/10.1038/s41587-022-01302-5
Meyer, J. G. (2021). Deep learning neural network tools for proteomics. Cell Rep Methods, 1(2), 100003. https://doi.org/10.1016/j.crmeth.2021.100003
Neijenhuis, T., Van Keulen, S. C., & Bonvin, A. M. J. J. (2022). Interface refinement of low- to medium-resolution cryo-EM complexes using HADDOCK2.4. Structure (London, England), 30(4), 476-484.e3 e473. https://doi.org/10.1016/j.str.2022.02.001
Van Zundert, G. C. P., Melquiond, A. S. J., & Bonvin, A. M. J. J. (2015). Integrative modeling of biomolecular complexes: HADDOCKing with Cryo-electron microscopy data. Structure (London, England), 23(5), 949-960. https://doi.org/10.1016/j.str.2015.03.014
Trellet, M., van Zundert, G., & Bonvin, A. (2020). Protein-protein modeling using cryo-EM restraints. Methods in Molecular Biology, 2112, 145-162. https://doi.org/10.1007/978-1-0716-0270-6_11
He, J., Lin, P., Chen, J., Cao, H., & Huang, S.-Y. (2022). Model building of protein complexes from intermediate-resolution cryo-EM maps with deep learning-guided automatic assembly. Nature Communications, 13(1), 4066. https://doi.org/10.1038/s41467-022-31748-9
Mccafferty, C. L., Taylor, D. W., & Marcotte, E. M. (2021). Improving integrative 3D modeling into low- to medium-resolution electron microscopy structures with evolutionary couplings. Protein Science, 30(5), 1006-1021. https://doi.org/10.1002/pro.4067
Webb, B., Viswanath, S., Bonomi, M., Pellarin, R., Greenberg, C. H., Saltzberg, D., & Sali, A. (2018). Integrative structure modeling with the Integrative Modeling Platform. Protein Science, 27(1), 245-258. https://doi.org/10.1002/pro.3311
Chen, M., Baldwin, P. R., Ludtke, S. J., & Baker, M. L. (2016). De Novo modeling in cryo-EM density maps with Pathwalking. Journal of Structural Biology, 196(3), 289-298. https://doi.org/10.1016/j.jsb.2016.06.004
Dimaio, F., Tyka, M. D., Baker, M. L., Chiu, W., & Baker, D. (2009). Refinement of protein structures into low-resolution density maps using rosetta. Journal of Molecular Biology, 392(1), 181-190. https://doi.org/10.1016/j.jmb.2009.07.008
Kappel, K., Liu, S., Larsen, K. P., Skiniotis, G., Puglisi, E. V., Puglisi, J. D., Zhou, Z. H, Zhao, R., & Das, R. (2018). De novo computational RNA modeling into cryo-EM maps of large ribonucleoprotein complexes. Nature Methods, 15(11), 947-954. https://doi.org/10.1038/s41592-018-0172-2
D'imprima, E., Floris, D., Joppe, M., Sánchez, R., Grininger, M., & Kühlbrandt, W. (2019). Protein denaturation at the air-water interface and how to prevent it. Elife, 8, e42747. https://doi.org/10.7554/eLife.42747
Al-Azzawi, A., Ouadou, A., Max, H., Duan, Y., Tanner, J. J., & Cheng, J. (2020). DeepCryoPicker: Fully automated deep neural network for single protein particle picking in cryo-EM. BMC Bioinformatics [Electronic Resource], 21(1), 509. https://doi.org/10.1186/s12859-020-03809-7
Wang, F., Gong, H., Liu, G., Li, M., Yan, C., Xia, T., Li, X., & Zeng, J. (2016). DeepPicker: A deep learning approach for fully automated particle picking in cryo-EM. Journal of Structural Biology, 195(3), 325-336. https://doi.org/10.1016/j.jsb.2016.07.006
Terwilliger, T. C., Grosse-Kunstleve, R. W., Afonine, P. V., Moriarty, N. W., Zwart, P. H., Hung, L.-W, Read, R. J., & Adams, P. D. (2008). Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallographica Section D, Biological Crystallography, 64(Pt 1), 61-69. https://doi.org/10.1107/S090744490705024X
Zhu, Y., Ouyang, Q., & Mao, Y. (2017). A deep convolutional neural network approach to single-particle recognition in cryo-electron microscopy. BMC Bioinformatics [Electronic Resource], 18(1), 348. https://doi.org/10.1186/s12859-017-1757-y
Sorzano, C. O. S., Recarte, E., Alcorlo, M., Bilbao-Castro, J. R., San-Martín, C., Marabini, R., & Carazo, J. M. (2009). Automatic particle selection from electron micrographs using machine learning techniques. Journal of Structural Biology, 167(3), 252-260. https://doi.org/10.1016/j.jsb.2009.06.011

Auteurs

Christian Tüting (C)

Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
Biozentrum, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.

Lisa Schmidt (L)

Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.

Ioannis Skalidis (I)

Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.

Andrea Sinz (A)

Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
Center for Structural Mass Spectrometry, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.

Panagiotis L Kastritis (PL)

Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
Biozentrum, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Databases, Protein Protein Domains Protein Folding Proteins Deep Learning
Humans Arthritis, Rheumatoid Lipid Metabolism Male Female

Classifications MeSH