Acetylcholine-sensitive control of long-term synaptic potentiation in hippocampal CA3 neurons.
AMPA receptors
acetylcholine
hippocampus
long-term potentiation
synaptic plasticity
Journal
Hippocampus
ISSN: 1098-1063
Titre abrégé: Hippocampus
Pays: United States
ID NLM: 9108167
Informations de publication
Date de publication:
08 2023
08 2023
Historique:
revised:
03
02
2023
received:
09
10
2022
accepted:
18
03
2023
medline:
14
7
2023
pubmed:
6
4
2023
entrez:
5
4
2023
Statut:
ppublish
Résumé
A Hebbian form of long-term potentiation (LTP) is believed to be the basis of memory storage at CA3 recurrent synapses. Abnormalities in CA3 intrinsic connectivity have been related to memory deficits in a variety of neurological disorders. Despite the promise of computational modeling for illuminating the pathogenic implication of connectivity changes, common Hebbian-based models with preset structural topologies fall short in this regard. Here, I introduce a structure-independent approach to modeling CA3 network focusing on how LTP shapes CA3 functional connectivity. Network simulations demonstrate that only a small fraction of the active synapses should be potentiated onto engram-bearing cells for reaching CA3 optimal performance, and that this fraction should be actively regulated at the single-cell level to maintain precise control over excitatory inputs to and from overlapping engram cells. In light of these findings, I develop a theory suggesting that synaptic potentiation is regulated through extrinsic and intrinsic cellular mechanisms involving the cholinergic modulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. The theory posits that the progressive increase of acetylcholine release during learning is commensurate with the rate of AMPA receptor trafficking during LTP development and that this dynamics is intended to conceal AMPA receptor potentiation and thereby to propel LTP progression until a target level of potentiation is attained at a restricted number of the active synapses. Functionally, this form of regulation allows encoding and retrieval dynamics to be dictated at the single-cell level and thereby acts at the cell-population level as a secondary mechanism complementing dentate gyrus-mediated pattern separation or compensating for possible deficiencies. Conversely, when this regulation fails, the strength of AMPA receptors and their variability across synapses change over time and lead to pathological states.
Substances chimiques
Acetylcholine
N9YNS0M02X
Receptors, AMPA
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
948-969Informations de copyright
© 2023 Wiley Periodicals LLC.
Références
Adams, S. V., Winterer, J., & Müller, W. (2004). Muscarinic signaling is required for spike-pairing induction of long-term potentiation at rat schaffer collateral-CA1 synapses. Hippocampus, 14(4), 413-416. https://doi.org/10.1002/hipo.10197
Aimone, J. B., Li, Y., Lee, S. W., Clemenson, G. D., Deng, W., & Gage, F. H. (2014). Regulation and function of adult neurogenesis: From genes to cognition. Physiological Reviews, 94(4), 991-1026. https://doi.org/10.1152/physrev.00004.2014
Allen, M. T., Chelius, L., & Gluck, M. A. (2002). Selective entorhinal and nonselective cortical-hippocampal region lesions, but not selective hippocampal lesions, disrupt learned irrelevance in rabbit eyeblink conditioning. CABN, 2(3), 214-226. https://doi.org/10.3758/cabn.2.3.214
Amaral, D. G., Ishizuka, N., & Claiborne, B. (1990). Neurons, numbers and the hippocampal network. Progress in Brain Research, 83, 1-11. https://doi.org/10.1016/s0079-6123(08)61237-6
Arai, A., Larson, J., & Lynch, G. (1990). Anoxia reveals a vulnerable period in the development of long-term potentiation. Brain Research, 511(2), 353-357. https://doi.org/10.1016/0006-8993(90)90184-d
Attardo, A., Fitzgerald, J. E., & Schnitzer, M. J. (2015). Impermanence of dendritic spines in live adult CA1 hippocampus. Nature, 523, 592-596. https://doi.org/10.1038/nature14467
Bennett, M. R., Gibson, W. G., & Robinson, J. (1994). Dynamics of the CA3 pyramidal neuron autoassociative memory network in the hippocampus. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 343(1304), 167-187. https://doi.org/10.1098/rstb.1994.0019
Blitzer, R. D., Gil, O., & Landau, E. M. (1990). Cholinergic stimulation enhances longterm potentiation in the CA1 region of rat hippocampus. Neuroscience Letters, 119(2), 207-210. https://doi.org/10.1016/0304-3940(90)90835-w
Brandalise, F., Carta, S., Helmchen, F., Lisman, J., & Gerber, U. (2016). Dendritic NMDA spikes are necessary for timing-dependent associative LTP in CA3 pyramidal cells. Nature Communications, 7, 13480.
Brunel, N. (1994). Storage capacity of neural networks: Effect of the fluctuations of the number of active neurons per memory. Journal of Physics A: Mathematical and General, 27(14), 4783-4789. https://doi.org/10.1088/0305-4470/27/14/009
Buchanan, K. A., Petrovic, M. M., Chamberlain, S. E. L., Marrion, N. V., & Mellor, J. R. (2010). Facilitation of long-term potentiation by muscarinic M1 receptors is mediated by inhibition of SK channels. Neuron, 68(5), 948-963. https://doi.org/10.1016/j.neuron.2010.11.018
Csicsvari, J., Hirase, H., Mamiya, A., & Buzsáki, G. (2000). Ensemble patterns of hippocampal CA3-CA1 neurons during sharp-wave associated population events. Neuron, 28(2), 585-594. https://doi.org/10.1016/s0896-6273(00)00135-5
Debanne, D., Gähwiler, B. H., & Thompson, S. M. (1999). Heterogeneity of synaptic plasticity at unitary CA3-CA1 and CA3-CA3 connections in rat hippocampal slice cultures. The Journal of Neuroscience, 19(24), 10664-10671. https://doi.org/10.1523/JNEUROSCI.19-24-10664.1999
Dubreuil, A. M., Amit, Y., & Brunel, N. (2014). Memory capacity of networks with stochastic binary synapses. PLoS Computational Biology, 10, e1003727. https://doi.org/10.1371/journal.pcbi.1003727
Fernàndez de Sevilla, D., Cabezas, C., Oshima de Prada, A. N., Sànchez-Jimènez, A., & Bu~no, W. (2002). Selective muscarinic regulation of functional glutamatergic schaffer collateral synapses in rat CA1 pyramidal neurons. The Journal of Physiology, 545(1), 51-63. https://doi.org/10.1113/jphysiol.2002.029165
Gardner, E. (1988). The space of interactions in neural network models. Journal of Physics A: Mathematical and General, 21(1), 257-270. https://doi.org/10.1088/0305-4470/21/1/030
Govindarajan, A., Kelleher, R. J., & Tonegawa, S. (2006). A clustered plasticity model of long-term memory engrams. Nature Reviews. Neuroscience, 7(7), 575-583. https://doi.org/10.1038/nrn1937
Guzman, S. J., Schlögl, A., Frotscher, M., & Jonas, P. (2016). Synaptic mechanisms of pattern completion in the hippocampal CA3 network. Science, 353(6304), 1117-1123. https://doi.org/10.1126/science.aaf1836
Hanson, J. E., Blank, M., Valenzuela, R. A., Garner, C. C., & Madison, D. V. (2007). The functional nature of synaptic circuitry is altered in area CA3 of the hippocampus in a mouse model of down's syndrome. The Journal of Physiology, 579(Pt 1), 53-67. https://doi.org/10.1113/jphysiol.2006.114868
Hanson, J. E., & Madison, D. V. (2010). Imbalanced pattern completion vs. separation in cognitive disease: Network simulations of synaptic pathologies predict a personalized therapeutics strategy. BMC Neuroscience, 11, 96. https://doi.org/10.1186/1471-2202-11-96
Harris, K., Csicsvari, J., Hirase, H., Dragoi, G., & Buzsáki, G. (2003). Organization of cell assemblies in the hippocampus. Nature, 424, 552-556. https://doi.org/10.1038/nature01834
Hasselmo, M. E. (2006). The role of acetylcholine in learning and memory. Current Opinion in Neurobiology, 16(6), 710-715. https://doi.org/10.1016/j.conb.2006.09.002
Hasselmo, M. E., & Schnell, E. (1994). Laminar selectivity of the cholinergic suppression of synaptic transmission in rat hippocampal region CA1: Computational modeling and brain slice physiology. The Journal of Neuroscience, 14(6), 3898-3914. https://doi.org/10.1523/JNEUROSCI.14-06-03898.1994
Hasselmo, M. E., Schnell, E., & Barkai, E. (1995). Dynamics of learning and recall at excitatory recurrent synapses and cholinergic modulation in rat hippocampal region CA3. The Journal of Neuroscience, 7(Pt 2), 5249-5262. https://doi.org/10.1523/JNEUROSCI.15-07-05249.1995
Humphries, R., Mellor, J. R., & O'Donnell, C. (2022). Acetylcholine boosts dendritic NMDA spikes in a CA3 pyramidal neuron model. Neuroscience, 489, 69-83. https://doi.org/10.1016/j.neuroscience.2021.11.014
Hunsaker, M., & Kesner, R. (2013). The operation of pattern separation and pattern completion processes associated with different attributes or domains of memory. Neuroscience and Biobehavioral Reviews, 37(1), 36-58. https://doi.org/10.1016/j.neubiorev.2012.09.014
Kashtan, N., Itzkovitz, S., Milo, R., & Alon, U. (2004). Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinformatics, 20(11), 1746-1758.
Kremin, T., & Hasselmo, M. E. (2007). Cholinergic suppression of glutamatergic synaptic transmission in hippocampal region CA3 exhibits laminar selectivity: Implication for hippocampal network dynamics. Neuroscience, 4(149), 760-767. https://doi.org/10.1016/j.neuroscience.2007.07.007
Larson, J., & Lynch, G. (1989). Theta pattern stimulation and the induction of LTP: The sequence in which synapses are stimulated determines the degree to which they potentiate. Brain Research, 489(1), 49-58. https://doi.org/10.1016/0006-8993(89)90007-3
Lee, K. J., Queenan, B. N., Rozeboom, A. M., Bellmore, R., Lim, S. T., Vicini, S., & Pak, D. T. S. (2013). Mossy fiber-CA3 synapses mediate homeostatic plasticity in mature hippocampal neurons. Neuron, 77(1), 99-114. https://doi.org/10.1016/j.neuron.2012.10.033
Leutgeb, S., Leutgeb, J. K., Treves, A., Moser, M.-B., & Moser, E. I. (2004). Distinct ensemble codes in hippocampal areas CA3 and CA1. Science, 305(5688), 1295-1298. https://doi.org/10.1126/science.1100265
Linster, C., Maloney, M., Patil, M., & Hasselmo, M. E. (2003). Enhanced cholinergic suppression of previously strengthened synapses enables the formation of self-organized representations in olfactory cortex. Neurobiology of Learning and Memory, 80(3), 302-314. https://doi.org/10.1016/s1074-7427(03)00078-9
Makara, J. K., & Magee, J. C. (2013). Variable dendritic integration in hippocampal CA3 pyramidal neurons. Neuron, 80(6), 1438-1450. https://doi.org/10.1016/j.neuron.2013.10.033
Markram, H., & Segal, M. (1990). Long-lasting facilitation of excitatory postsynaptic potentials in the rat hippocampus by acetylcholine. The Journal of Physiology, 427(1), 381-393. https://doi.org/10.1113/jphysiol.1990.sp018177
Matsuzaki, M., Ellis-Davies, G. C. R., Nemoto, T., Miyashita, Y., Iino, M., & Kasai, H. (2001). Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nature Neuroscience, 4(11), 1086-1092. https://doi.org/10.1038/nn736
McEwen, B. S., Bowles, N. P., Gray, J. D., Hill, M. N., Hunter, R. G., Karatsoreos, I. N., & Nasca, C. (2015). Mechanisms of stress in the brain. Nature Neuroscience, 18(10), 1353-1363. https://doi.org/10.1038/nn.4086
McLennan, H., & Miller, J. J. (1974). The hippocampal control of neuronal discharges in the septum of the rat. The Journal of Physiology, 237(3), 607-624. https://doi.org/10.1113/jphysiol.1974.sp010500
Meeter, M., Murre, J. M. J., & Talamini, L. M. (2004). Mode shifting between storage and recall based on novelty detection in oscillating hippocampal circuits. Hippocampus, 14(6), 722-741. https://doi.org/10.1002/hipo.10214
Mishra, R. K., Kim, S., Guzman, S. J., & Jonas, P. (2016). Symmetric spike timingdependent plasticity at CA3-CA3 synapses optimizes storage and recall in autoassociative networks. Nature Communications, 7, 11552. https://doi.org/10.1038/ncomms11552
Montgomery, J. M., Pavlidis, P., & Madison, D. V. (2001). Pair recordings reveal allsilent synaptic connections and the postsynaptic expression of long-term potentiation. Neuron, 29(3), 691-701. https://doi.org/10.1016/s0896-6273(01)00244-6
Morris, R. G. M., Inglis, J., Ainge, J. A., Olverman, H. J., Tulloch, J., Dudai, Y., & Kelly, P. A. T. (2006). Memory reconsolidation: Sensitivity of spatial memory to inhibition of protein synthesis in dorsal hippocampus during encoding and retrieval. Neuron, 50(3), 479-489. https://doi.org/10.1016/j.neuron.2006.04.012
Nakashiba, T., Young, J. Z., McHugh, T. J., Buhl, D. L., & Tonegawa, S. (2008). Transgenic inhibition of synaptic transmission reveals role of CA3 output in hippocampal learning. Science, 319(5867), 1260-1264. https://doi.org/10.1126/science.1151120
O'Reilly, R. C., Bhattacharyya, R., Howard, M. D., & Ketz, N. (2014). Complementary learning systems. Cognitive Science, 38(6), 1229-1248. https://doi.org/10.1111/j.1551-6709.2011.01214.x
O'Reilly, R. C., & McClelland, J. L. (1994). Hippocampal conjunctive encoding, storage, and recall: Avoiding a trade-off. Hippocampus, 4(6), 661-682. https://doi.org/10.1002/hipo.450040605
Papp, G., & Treves, A. (2008). Network analysis of the significance of hippocampal subfields. In S. J. Y. Mizumori (Ed.), Hippocampal place-fields: Relevance to learning and memory. Oxford University Press chap 20.
Patneau, D. K., & Mayer, M. L. (1990). Structure-activity relationships for amino acid transmitter candidates acting at N-methyl-D-aspartate and quisqualate receptors. The Journal of Neuroscience, 10(7), 2385-2399. https://doi.org/10.1523/JNEUROSCI.10-07-02385.1990
Penzes, P., Cahill, M. E., Jones, K. A., VanLeeuwen, J.-E., & Woolfrey, K. M. (2011). Dendritic spine pathology in neuropsychiatric disorders. Nature Neuroscience, 14(3), 285-293. https://doi.org/10.1038/nn.2741
Petersen, C. C. H., Malenka, R. C., Nicoll, R. A., & Hopfield, J. J. (1998). All-or-none potentiation at CA3-CA1 synapses. PNAS, 95(8), 4732-4737. https://doi.org/10.1073/pnas.95.8.4732
Rabinovitch, M. S., & Rosvold, H. E. (1951). A closed-field intelligence test for rats. Canadian Journal of Psychology, 5(3), 122-128. https://doi.org/10.1037/h0083542
Rama, S., Zbili, M., Fékété, A., Tapia, M., Benitez, M. J., Boumedine, N., … Debanne, D. (2017). The role of axonal Kv1 channels in CA3 pyramidal cell excitability. Scientific Reports, 7, 315. https://doi.org/10.1038/s41598-017-00388-1
Rogers, J. L., & Kesner, R. P. (2003). Cholinergic modulation of the hippocampus during encoding and retrieval. Neurobiology of Learning and Memory, 80(3), 332-342. https://doi.org/10.1016/s1074-7427(03)00063-7
Rolls, E. T. (2013). The mechanisms for pattern completion and pattern separation in the hippocampus. Frontiers in Systems Neuroscience, 7, 74. https://doi.org/10.3389/fnsys.2013.00074
Stiver, M. L., Jacklin, D. L., Mitchnick, K. A., Vicic, N., Carlin, J., O'Hara, M., & Winters, B. D. (2015). Cholinergic manipulations bidirectionally regulate object memory destabilization. Learning & Memory, 22, 203-214. https://doi.org/10.1101/lm.037713.114
Sugisaki, E., Fukushima, Y., Tsukada, M., & Aihara, T. (2011). Cholinergic modulation on spike timing-dependent plasticity in hippocampal CA1 network. Neuroscience, 192, 91-101. https://doi.org/10.1016/j.neuroscience.2011.06.064
Takahashi, N., Kitamura, K., Matsuo, N., Mayford, M., Kano, M., Matsuki, N., & Ikegaya, Y. (2012). Locally synchronized synaptic inputs. Science, 335(6066), 353-356. https://doi.org/10.1126/science.1210362
Takahashi, N., Sasaki, T., Matsumoto, W., Matsuki, N., & Ikegaya, Y. (2010). Circuit topology for synchronizing neurons in spontaneously active networks. PNAS, 107(22), 10244-10249. https://doi.org/10.1073/pnas.0914594107
Witter, M. P. (2007). Intrinsic and extrinsic wiring of CA3: Indications for connectional heterogeneity. Learning & Memory, 14(11), 705-713. https://doi.org/10.1101/lm.725207
Wittner, L., Henze, D. A., Záborszky, L., & Buzsáki, G. (2007). Three-dimensional reconstruction of the axon arbor of a CA3 pyramidal cell recorded and filled in vivo. Brain Structure & Function, 212(1), 75-83. https://doi.org/10.1007/s00429-007-0148-y
Yassa, M. A., & Stark, C. E. L. (2011). Pattern separation in the hippocampus. Trends in Neurosciences, 34(10), 515-525. https://doi.org/10.1016/j.tins.2011.06.006
Zhang, H., Lin, S.-C., & Nicolelis, M. A. L. (2010). Spatiotemporal coupling between hippocampal acetylcholine release and theta oscillations in vivo. The Journal of Neuroscience, 30(40), 13431-13440. https://doi.org/10.1523/JNEUROSCI.1144-10.2010
Zhang, J. J., Haubrich, J., Bernabo, M., Finnie, P. S. B., & Nader, K. (2018). Limits on lability: Boundaries of reconsolidation and the relationship to metaplasticity. Neurobiology of Learning and Memory, 154, 78-86. https://doi.org/10.1016/j.nlm.2018.02.018
Zheng, F., Wess, J., & Alzheimer, C. (2012). M2 muscarinic acetylcholine receptors regulate long-term potentiation at hippocampal CA3 pyramidal cell synapses in an input-specific fashion. Journal of Neurophysiology, 108(1), 91-100. https://doi.org/10.1152/jn.00740.2011