Hypothesis: functional age and onset of autosomal dominant genetic prion disease.


Journal

Theory in biosciences = Theorie in den Biowissenschaften
ISSN: 1611-7530
Titre abrégé: Theory Biosci
Pays: Germany
ID NLM: 9708216

Informations de publication

Date de publication:
Jun 2023
Historique:
received: 30 06 2022
accepted: 10 03 2023
medline: 26 5 2023
pubmed: 6 4 2023
entrez: 5 4 2023
Statut: ppublish

Résumé

Autosomal dominant diseases typically have an age-related onset. Here, I focus on genetic prion disease (gPrD), caused by various mutations in the PRNP gene. While gPrD typically occurs at or after middle age, there can be considerable variability in the specific age of onset. This variability can occur among patients with the same PRNP mutation; in some cases, these differences occur not only between families but even within the same family. It is not known why gPrD onset is typically delayed for decades when the causative mutation is present from birth. Mouse models of gPrD manifest disease; however, unlike human gPrD, which typically takes decades to manifest, mouse models exhibit disease within months. Therefore, the time to onset of prion disease is proportional to species lifespan; however, it is not known why this is the case. I hypothesize that the initiation of gPrD is strongly influenced by the process of aging; therefore, disease onset is related to proportional functional age (e.g., mice vs. humans). I propose approaches to test this hypothesis and discuss its significance with respect to delaying prion disease through suppression of aging.

Identifiants

pubmed: 37017882
doi: 10.1007/s12064-023-00389-x
pii: 10.1007/s12064-023-00389-x
doi:

Substances chimiques

Prions 0
Prion Proteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

143-150

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Asante EA, Gowland I, Grimshaw A et al (2009) Absence of spontaneous disease and comparative prion susceptibility of transgenic mice expressing mutant human prion proteins. J Gen Virol 90(Pt 3):546–558. https://doi.org/10.1099/vir.0.007930-0
doi: 10.1099/vir.0.007930-0 pubmed: 19218199 pmcid: 2885063
Blagosklonny MV (2019) Rapamycin for longevity: opinion article. Aging (Albany NY) 11:8048–67. https://doi.org/10.18632/aging.102355
doi: 10.18632/aging.102355 pubmed: 31586989
Brown P, Brandel JP, Sato T et al (2012) Iatrogenic creutzfeldt-jakob disease. Final Asses Emerg Infect Dis 8:901–907. https://doi.org/10.3201/eid1806.120116
doi: 10.3201/eid1806.120116
Cheikhi A, Barchowsky A, Sahu A et al (2019) Klotho: an elephant in aging research. J Gerontol A Biol Sci Med Sci 74:1031–1042. https://doi.org/10.1093/gerona/glz061
doi: 10.1093/gerona/glz061 pubmed: 30843026 pmcid: 7330474
Crutcher E, Pal R, Naini F et al (2019) mTOR and autophagy pathways are dysregulated in murine and human models of Schaaf-Yang syndrome. Sci Rep 9:15935. https://doi.org/10.1038/s41598-019-52287-2
doi: 10.1038/s41598-019-52287-2 pubmed: 31685878 pmcid: 6828689
Der G, Batty GD, Benzeval M et al (2012) Is telomere length a biomarker for aging: cross-sectional evidence from the west of Scotland? PLoS One 7:e45166. https://doi.org/10.1371/journal.pone.0045166
doi: 10.1371/journal.pone.0045166 pubmed: 23028820 pmcid: 3454419
Farshim PP, Gillian P, Bates GP (2018) Mouse models of huntington’s disease. Methods Mol Biol 1780:97–120. https://doi.org/10.1007/978-1-4939-7825-0_6
doi: 10.1007/978-1-4939-7825-0_6 pubmed: 29856016
Friedman-Levi Y, Meiner Z, Canello T et al (2011) Fatal prion disease in a mouse model of genetic E200K Creutzfeldt-Jakob disease. PLoS Pathog 7(11):e1002350. https://doi.org/10.1371/journal.ppat.1006294
doi: 10.1371/journal.ppat.1006294 pubmed: 22072968 pmcid: 3207931
Gambetti P, Kong Q, Zou W, Parchi P, Chen SG (2003) Sporadic and familial CJD: classification and characterisation. Br Med Bull 66:213–239. https://doi.org/10.1093/bmb/66.1.213
doi: 10.1093/bmb/66.1.213 pubmed: 14522861
Geschwind MD (2015) Prion diseases. Continuum (Minneap Minn) 21(6):1612–1638. https://doi.org/10.1212/CON.0000000000000251
doi: 10.1212/CON.0000000000000251 pubmed: 26633779
Hagan C. (2017) When are mice considered old? Jackson Laboratory website, November 2017, accessed 3/2/20, https://www.jax.org/news-and-insights/jax-blog/2017/november/when-are-mice-considered-old
Harrison DE, Strong R, Sharp ZD et al (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392–395. https://doi.org/10.1038/nature08221
doi: 10.1038/nature08221 pubmed: 19587680 pmcid: 2786175
Heras-Sandoval D, Pérez-Rojas JM, Pedraza-Chaverri J (2020) Novel compounds for the modulation of mTOR and autophagy to treat neurodegenerative diseases. Cell Singla 65:109442. https://doi.org/10.1016/j.cellsig.2019.109442
doi: 10.1016/j.cellsig.2019.109442
Jackson WS, Krost C (2014) Peculiarities of prion diseases. PLoS Pathog 10:e1004451. https://doi.org/10.1371/journal.ppat.1004451
doi: 10.1371/journal.ppat.1004451 pubmed: 25411777 pmcid: 4239104
Jackson WS, Borkowski AW, Watson NE et al (2013) Profoundly different prion diseases in knock-in mice carrying single PrP codon substitutions associated with human diseases. Proc Natl Acad Sci USA 110:14759–14764. https://doi.org/10.1073/pnas.1312006110
doi: 10.1073/pnas.1312006110 pubmed: 23959875 pmcid: 3767526
Kim MO, Takada LT, Wong K, Forner SA, Geschwind MD (2018) Genetic PrP prion diseases. Cold Spring Harb Perspect Biol 10(5):a033134. https://doi.org/10.1101/cshperspect.a033134.Review
doi: 10.1101/cshperspect.a033134.Review pubmed: 28778873 pmcid: 5932589
Kovács GG, Puopolo M, Ladogana A et al (2006) Genetic prion disease: the EUROCJD experience. Hum Genet 118:166–174. https://doi.org/10.1007/s00439-005-0020-1
doi: 10.1007/s00439-005-0020-1
Lamming DW, Ye L, Sabatini DM, Baur JA (2013) Rapalogs and mTOR inhibitors as anti-aging therapeutics. J Clin Invest 123:980–989. https://doi.org/10.1172/JCI64099
doi: 10.1172/JCI64099 pubmed: 23454761 pmcid: 3582126
Liu H, Fergusson MM, Castilho RM et al (2007) Augmented Wnt signaling in a mammalian model of accelerated aging. Science 317:803–806. https://doi.org/10.1126/science.1143578
doi: 10.1126/science.1143578 pubmed: 17690294
Liu Y, Pan J, Pan X et al (2019) Klotho-mediated targeting of CCL2 suppresses the induction of colorectal cancer progression by stromal cell senescent microenvironments. Mol Oncol 13:2460–2475. https://doi.org/10.1002/1878-0261.12577
doi: 10.1002/1878-0261.12577 pubmed: 31545552 pmcid: 6822285
Marín-Moreno A, Espinosa JC, Torres JM (2020) Transgenic mouse models for the study of prion diseases. Prog Mol Biol Transl Sci 175:147–177. https://doi.org/10.1016/bs.pmbts.2020.08.007
doi: 10.1016/bs.pmbts.2020.08.007 pubmed: 32958231
Minikel EV, Vallabh SM, Lek M et al (2016) Quantifying prion disease penetrance using large population control cohorts. Sci Transl Med 8(322):322ra9. https://doi.org/10.1126/scitranslmed.aad5169
doi: 10.1126/scitranslmed.aad5169 pubmed: 26791950 pmcid: 4774245
Minikel EV, Vallabh SM, Orseth MC et al (2019) Age at onset in genetic prion disease and the design of preventive clinical trials. Neurology 93:e125–e134. https://doi.org/10.1212/WNL.0000000000007745
doi: 10.1212/WNL.0000000000007745 pubmed: 31171647 pmcid: 6656649
Minikel EV, Zhao HT, Le J et al (2020) Prion protein lowering is a disease-modifying therapy across prion disease stages, strains, and endpoints. Nucleic Acids Res 48:10615–10631. https://doi.org/10.1093/nar/gkaa616
doi: 10.1093/nar/gkaa616 pubmed: 32776089 pmcid: 7641729
Nitsan Z, Cohen OS, Chapman J et al (2020) Familial Creutzfeldt-Jakob disease homozygous to the E200K mutation: clinical characteristics and disease course. J Neurol 267:2455–2458. https://doi.org/10.1007/s00415-020-09826-z
doi: 10.1007/s00415-020-09826-z pubmed: 32367297
Prokhorova TA, Boksha IS, Savushkina OK, Tereshkina EB, Burbaeva GS (2019) α-Klotho protein in neurodegenerative and mental diseases. Zh Nevrol Psikhiatr Im S Korsakova 119:80–88. https://doi.org/10.17116/jnevro201911901180
doi: 10.17116/jnevro201911901180
Reita D, Bour C, Benbrika R et al (2019) Synergistic anti-tumor effect of mTOR inhibitors with irinotecan on colon cancer cells. Cancers (basel) 11:1581. https://doi.org/10.3390/cancers11101581
doi: 10.3390/cancers11101581 pubmed: 31627299
Robanus-Maandag EC, Koelink PJ, Breukel C et al (2010) A new conditional Apc-mutant mouse model for colorectal cancer. Carcinogenesis 31:946–952. https://doi.org/10.1093/carcin/bgq046
doi: 10.1093/carcin/bgq046 pubmed: 20176656
Rubinstein TA, Shahmoon S, Zigmond E et al (2019) Klotho suppresses colorectal cancer through modulation of the unfolded protein response. Oncogene 38:794–807. https://doi.org/10.1038/s41388-018-0489-4
doi: 10.1038/s41388-018-0489-4
Rudge P, Jaunmuktane Z, Adlard P et al (2015) Iatrogenic CJD due to pituitary-derived growth hormone with genetically determined incubation times of up to 40 years. Brain 138(Pt 11):3386–3399. https://doi.org/10.1093/brain/awv235
doi: 10.1093/brain/awv235 pubmed: 26268531 pmcid: 4620512
Semba RD, Cappola AR, Sun K et al (2011) Plasma klotho and mortality risk in older community-dwelling adults. J Gerontol A Biol Sci Med Sci 66:794–800. https://doi.org/10.1093/gerona/glr058
doi: 10.1093/gerona/glr058 pubmed: 21474560
Simon ES, Kahana E, Chapman J et al (2000) Creuzfeldt-Jakob disease profile in patients homozygous for the PRNP E200K mutation. Ann Neurol 47:257–260. https://doi.org/10.1002/1531-8249(200002)47:2%3c257::AID-ANA20%3e3.0.CO;2-U
doi: 10.1002/1531-8249(200002)47:2<257::AID-ANA20>3.0.CO;2-U pubmed: 10665501
Synofzik M, Bauer P, Schöls L (2009) Prion mutation D178N with highly variable disease onset and phenotype. J Neurol Neurosurg Psychiatry 80:345–346. https://doi.org/10.1136/jnnp.2008.149922
doi: 10.1136/jnnp.2008.149922 pubmed: 19228673
Vallabh SM, Zou D, Pitstick R et al (2023) Therapeutic trial of anle 138b in mouse models of genetic prion disease. J Virology. https://doi.org/10.1128/jvi.01672-22
doi: 10.1128/jvi.01672-22 pubmed: 36651748 pmcid: 9973041
Watts JC, Giles K, Bourkas MEC et al (2016) Towards authentic transgenic mouse models of heritable PrP prion diseases. Acta Neuropathol 132:593–610. https://doi.org/10.1007/s00401-016-1585-6
doi: 10.1007/s00401-016-1585-6 pubmed: 27350609 pmcid: 5152593
Weissmann C, Enari M, Klöhn P-C, Rossi D, Flechsig E (2002) Transmission of prions. J Infect Dis 186(Supplement 2):S157–S165. https://doi.org/10.1086/344575
doi: 10.1086/344575 pubmed: 12424692
Xie B, Nie S, Hu G et al (2019) The involvement of NF-κB/Klotho signaling in colorectal cancer cell survival and invasion. Pathol Oncol Res 25:1553–1565. https://doi.org/10.1007/s12253-018-0493-6
doi: 10.1007/s12253-018-0493-6 pubmed: 30612312

Auteurs

Michael Bordonaro (M)

Department of Medical Education, Geisinger Commonwealth School of Medicine, 525 Pine Street, Scranton, PA, 18509, USA. mbordonaro1@geisinger.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH