Cryo-EM structure of the transposon-associated TnpB enzyme.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
04 2023
04 2023
Historique:
received:
04
10
2022
accepted:
08
03
2023
medline:
14
4
2023
pubmed:
6
4
2023
entrez:
5
4
2023
Statut:
ppublish
Résumé
The class 2 type V CRISPR effector Cas12 is thought to have evolved from the IS200/IS605 superfamily of transposon-associated TnpB proteins
Identifiants
pubmed: 37020030
doi: 10.1038/s41586-023-05933-9
pii: 10.1038/s41586-023-05933-9
pmc: PMC10097598
doi:
Substances chimiques
Bacterial Proteins
0
CRISPR-Associated Proteins
0
DNA
9007-49-2
DNA Transposable Elements
0
RNA, Guide, CRISPR-Cas Systems
0
Endodeoxyribonucleases
EC 3.1.-
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
390-397Subventions
Organisme : NIGMS NIH HHS
ID : T32 GM007753
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM144273
Pays : United States
Organisme : NHGRI NIH HHS
ID : R01 HG009761
Pays : United States
Informations de copyright
© 2023. The Author(s).
Références
Makarova, K. S. et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat. Rev. Microbiol. 18, 67–83 (2020).
doi: 10.1038/s41579-019-0299-x
pubmed: 31857715
Altae-Tran, H. et al. The widespread IS200/IS605 transposon family encodes diverse programmable RNA-guided endonucleases. Science 374, 57–65 (2021).
doi: 10.1126/science.abj6856
pubmed: 34591643
pmcid: 8929163
Karvelis, T. et al. Transposon-associated TnpB is a programmable RNA-guided DNA endonuclease. Nature 599, 692–696 (2021).
doi: 10.1038/s41586-021-04058-1
pubmed: 34619744
pmcid: 8612924
Hille, F. et al. The biology of CRISPR–Cas: backward and forward. Cell 172, 1239–1259 (2018).
doi: 10.1016/j.cell.2017.11.032
pubmed: 29522745
Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl Acad. Sci. USA 109, 2579–2586 (2012).
doi: 10.1073/pnas.1208507109
Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).
doi: 10.1126/science.1225829
pubmed: 22745249
pmcid: 6286148
Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR–Cas system. Cell 163, 759–771 (2015).
doi: 10.1016/j.cell.2015.09.038
pubmed: 26422227
pmcid: 4638220
Shmakov, S. et al. Discovery and functional characterization of diverse class 2 CRISPR–Cas systems. Mol. Cell 60, 385–397 (2015).
doi: 10.1016/j.molcel.2015.10.008
pubmed: 26593719
pmcid: 4660269
Yan, W. X. et al. Functionally diverse type V CRISPR–Cas systems. Science 363, 88–91 (2019).
doi: 10.1126/science.aav7271
pubmed: 30523077
Burstein, D. et al. New CRISPR–Cas systems from uncultivated microbes. Nature 542, 237–241 (2017).
doi: 10.1038/nature21059
pubmed: 28005056
Harrington, L. B. et al. Programmed DNA destruction by miniature CRISPR–Cas14 enzymes. Science 362, 839 (2018).
doi: 10.1126/science.aav4294
pubmed: 30337455
pmcid: 6659742
Pausch, P. et al. Crispr–CasФ from huge phages is a hypercompact genome editor. Science 69, 333–337 (2020).
doi: 10.1126/science.abb1400
Strecker, J. et al. RNA-guided DNA insertion with CRISPR-associated transposases. Science 365, 48–53 (2019).
doi: 10.1126/science.aax9181
pubmed: 31171706
pmcid: 6659118
Urbaitis, T. et al. A new family of CRISPR‐type V nucleases with C‐rich PAM recognition. EMBO Rep. 23, e55481 (2022).
doi: 10.15252/embr.202255481
pubmed: 36268581
pmcid: 9724661
Wu, W. Y. et al. The miniature CRISPR–Cas12m effector binds DNA to block transcription. Mol. Cell 82, 4487–4502.e7 (2022).
doi: 10.1016/j.molcel.2022.11.003
pubmed: 36427491
Schuler, G., Hu, C. & Ke, A. Structural basis for RNA-guided DNA cleavage by IscB–ωRNA and mechanistic comparison with Cas9. Science 376, 1476–1481 (2022).
doi: 10.1126/science.abq7220
pubmed: 35617371
pmcid: 10041819
Kato, K. et al. Structure of the IscB–ωRNA ribonucleoprotein complex, the likely ancestor of CRISPR–Cas9. Nat. Commun. 13, 6719 (2022).
doi: 10.1038/s41467-022-34378-3
pubmed: 36344504
pmcid: 9640706
Anders, C., Niewoehner, O., Duerst, A. & Jinek, M. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513, 569–573 (2014).
doi: 10.1038/nature13579
pubmed: 25079318
pmcid: 4176945
Takeda, S. N. et al. Structure of the miniature type V-F CRISPR–Cas effector enzyme. Mol. Cell 81, 558–570.e3 (2021).
doi: 10.1016/j.molcel.2020.11.035
pubmed: 33333018
Swarts, D. C. & Jinek, M. Mechanistic insights into the cis- and trans-acting DNase activities of Cas12a. Mol. Cell 73, 589–600.e4 (2019).
doi: 10.1016/j.molcel.2018.11.021
pubmed: 30639240
pmcid: 6858279
Liu, J. J. et al. CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature 566, 218–223 (2019).
doi: 10.1038/s41586-019-0908-x
pubmed: 30718774
pmcid: 6662743
Gomes-Filho, J. V. et al. Sense overlapping transcripts in IS1341-type transposase genes are functional non-coding RNAs in archaea. RNA Biol. 12, 490–500 (2015).
doi: 10.1080/15476286.2015.1019998
pubmed: 25806405
pmcid: 4615843
Kim, D. Y. et al. Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus. Nat. Biotechnol. 40, 94–102 (2022).
doi: 10.1038/s41587-021-01009-z
pubmed: 34475560
Wang, Y. et al. Guide RNA engineering enables efficient CRISPR editing with a miniature Syntrophomonas palmitatica Cas12f1 nuclease. Cell Rep. 40, 111481 (2022).
doi: 10.1016/j.celrep.2022.111418
Schmid-Burgk, J. L. et al. Highly parallel profiling of Cas9 variant specificity. Mol. Cell 78, 794–800.e8 (2020).
doi: 10.1016/j.molcel.2020.02.023
pubmed: 32187529
pmcid: 7370240
Yang, H., Gao, P., Rajashankar, K. R. & Patel, D. J. PAM-dependent target DNA recognition and cleavage by C2c1 CRISPR–Cas endonuclease. Cell 167, 1814–1828.e12 (2016).
doi: 10.1016/j.cell.2016.11.053
pubmed: 27984729
pmcid: 5278635
Hirano, S. et al. Structure of the OMEGA nickase IsrB in complex with ωRNA and target DNA. Nature 610, 575–581 (2022).
doi: 10.1038/s41586-022-05324-6
pubmed: 36224386
pmcid: 9581776
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. CryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
doi: 10.1038/nmeth.4169
pubmed: 28165473
Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).
doi: 10.1038/s41592-020-00990-8
pubmed: 33257830
Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).
doi: 10.1016/j.jmb.2003.07.013
pubmed: 14568533
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
doi: 10.1038/s41586-021-03819-2
pubmed: 34265844
pmcid: 8371605
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D D60, 2126–2132 (2004).
doi: 10.1107/S0907444904019158
Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D 74, 531–544 (2018).
doi: 10.1107/S2059798318006551
Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).
doi: 10.1107/S0907444909042073
pubmed: 20057044
Barad, B. A. et al. EMRinger: side chain-directed model and map validation for 3D cryo-electron microscopy. Nat. Methods 12, 943–946 (2015).
doi: 10.1038/nmeth.3541
pubmed: 26280328
pmcid: 4589481
Zi Tan, Y. et al. Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nat. Methods 14, 793–796 (2017).
doi: 10.1038/nmeth.4347
Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).
doi: 10.1002/pro.3943
pubmed: 32881101
Clement, K. et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol. 37, 224–226 (2019).
doi: 10.1038/s41587-019-0032-3
pubmed: 30809026
pmcid: 6533916
Söding, J. Protein homology detection by HMM–HMM comparison. Bioinformatics 21, 951–960 (2005).
doi: 10.1093/bioinformatics/bti125
pubmed: 15531603