A Multiscale Model for Shear-Mediated Platelet Adhesion Dynamics: Correlating In Silico with In Vitro Results.


Journal

Annals of biomedical engineering
ISSN: 1573-9686
Titre abrégé: Ann Biomed Eng
Pays: United States
ID NLM: 0361512

Informations de publication

Date de publication:
May 2023
Historique:
received: 22 11 2022
accepted: 22 03 2023
medline: 25 4 2023
pubmed: 6 4 2023
entrez: 5 4 2023
Statut: ppublish

Résumé

Platelet adhesion to blood vessel walls is a key initial event in thrombus formation in both vascular disease processes and prosthetic cardiovascular devices. We extended a deformable multiscale model (MSM) of flowing platelets, incorporating Dissipative Particle Dynamics (DPD) and Coarse-Grained Molecular Dynamics (CGMD) describing molecular-scale intraplatelet constituents and their interaction with surrounding flow, to predict platelet adhesion dynamics under physiological flow shear stresses. Binding of platelet glycoprotein receptor Ibα (GPIbα) to von Willebrand factor (vWF) on the blood vessel wall was modeled by a molecular-level hybrid force field and validated with in vitro microchannel experiments of flowing platelets at 30 dyne/cm

Identifiants

pubmed: 37020171
doi: 10.1007/s10439-023-03193-2
pii: 10.1007/s10439-023-03193-2
doi:

Substances chimiques

von Willebrand Factor 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1094-1105

Subventions

Organisme : NHLBI NIH HHS
ID : U01 HL131052
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL131052
Pays : United States

Informations de copyright

© 2023. The Author(s) under exclusive licence to Biomedical Engineering Society.

Références

Belyaev, A. V. Catching platelets from the bloodflow: the role of the conformation of von Willebrand factor. Math. Model. Nat. Phenom. 13:44, 2018.
doi: 10.1051/mmnp/2018043
Belyaev, A. V. Long ligands reinforce biological adhesion under shear flow. Phys Rev E.97:042407, 2018.
pubmed: 29758601 doi: 10.1103/PhysRevE.97.042407
Belyaev, A. V. and Y. K. Kushchenko. Biomechanical activation of blood platelets via adhesion to von Willebrand factor studied with mesoscopic simulations. Biomech. Model. Mechanobiol. 2023.
Bluestein, D. Research approaches for studying flow-induced thromboembolic complications in blood recirculating devices. Expert Rev. Med Devices. 1:65–80, 2004.
pubmed: 16293011 doi: 10.1586/17434440.1.1.65
Danes, N. A., and K. Leiderman. A density-dependent FEM-FCT algorithm with application to modeling platelet aggregation. Int. J. Numer. Methods Biomed. Eng. 35:e3212, 2019.
doi: 10.1002/cnm.3212
Doggett, T. A., G. Girdhar, A. Lawshé, D. W. Schmidtke, I. J. Laurenzi, S. L. Diamond, and T. G. Diacovo. Selectin-like kinetics and biomechanics promote rapid platelet adhesion in flow: the GPIbα-vWF tether bond. Biophys J. 83:194–205, 2002.
pubmed: 12080112 pmcid: 1302139 doi: 10.1016/S0006-3495(02)75161-8
Du, J., D. Kim, G. Alhawael, D. N. Ku, and A. L. Fogelson. Clot permeability, agonist transport, and platelet binding kinetics in arterial thrombosis. Biophys. J. 119:2102–2115, 2020.
pubmed: 33147477 pmcid: 7732729 doi: 10.1016/j.bpj.2020.08.041
Du, X. Signaling and regulation of the platelet glycoprotein Ib–IX–V complex. Curr Opin. Hematol. 14:262–269, 2007.
pubmed: 17414217 doi: 10.1097/MOH.0b013e3280dce51a
Evans, E. A., and D. A. Calderwood. Forces and bond dynamics in cell adhesion. Science. 316:1148–1153, 2007.
pubmed: 17525329 doi: 10.1126/science.1137592
Fitzgibbon, S., J. Cowman, A. J. Ricco, D. Kenny, and E. S. Shaqfeh. Examining platelet adhesion via Stokes flow simulations and microfluidic experiments. Soft Matter. 11:355–367, 2015.
pubmed: 25382632 doi: 10.1039/C4SM01450B
Fox, J. E., L. P. Aggerbeck, and M. C. Berndt. Structure of the glycoprotein IbIX complex from platelet membranes. J. Biol. Chem. 263:4882–4890, 1988.
pubmed: 3280570 doi: 10.1016/S0021-9258(18)68868-4
Gao, C., P. Zhang and D. Bluestein. Multiscale Modeling of Mechanotransduction Processes in Flow-Induced Platelet Activation. 2016 IEEE 2nd International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Performance and Smart Computing (HPSC), and IEEE International Conference on Intelligent Data and Security (IDS); 2016:274–279.
Gao, C., P. Zhang, G. Marom, Y. Deng, and D. Bluestein. Reducing the effects of compressibility in DPD-based blood flow simulations through severe stenotic microchannels. J. Comput. Phys. 335:812–827, 2017.
doi: 10.1016/j.jcp.2017.01.062
Gogia, S., and S. Neelamegham. Role of fluid shear stress in regulating VWF structure, function and related blood disorders. Biorheology. 52:319–335, 2015.
pubmed: 26600266 doi: 10.3233/BIR-15061
Gupta, P., P. Zhang, J. Sheriff, D. Bluestein, and Y. Deng. A multiscale model for multiple platelet aggregation in shear flow. Biomech. Model. Mechanobiol. 20:1013–1030, 2021.
pubmed: 33782796 pmcid: 8274306 doi: 10.1007/s10237-021-01428-6
Gupta, P., P. Zhang, J. Sheriff, D. Bluestein, and Y. Deng. A multiscale model for recruitment aggregation of platelets by correlating with in vitro results. Cell Mol. Bioeng. 12:327–343, 2019.
pubmed: 31662802 pmcid: 6816765 doi: 10.1007/s12195-019-00583-2
Han, C., P. Zhang, D. Bluestein, G. Cong, and Y. Deng. Artificial intelligence for accelerating time integrations in multiscale modeling. J. Comput. Phys.427:110053, 2021.
pubmed: 35821963 doi: 10.1016/j.jcp.2020.110053
Han, C., P. Zhang, Y. Zhu, G. Cong, J. R. Kozloski, C. C. Yang, L. Zhang, and Y. Deng. Scalable multiscale modeling of platelets with 100 million particles. J. Supercomput. 78:1–18, 2022.
doi: 10.1007/s11227-022-04648-4
Jackson, S., W. S. Nesbitt, and E. Westein. Dynamics of platelet thrombus formation. J. Thromb. Haemost. 7:17–20, 2009.
pubmed: 19630759 doi: 10.1111/j.1538-7836.2009.03401.x
Kim, J., C.-Z. Zhang, X. Zhang, and T. A. Springer. A mechanically stabilized receptor–ligand flex-bond important in the vasculature. Nature. 466:992–995, 2010.
pubmed: 20725043 pmcid: 4117310 doi: 10.1038/nature09295
Kim, J., C. Z. Zhang, X. Zhang, and T. A. Springer. A mechanically stabilized receptor-ligand flex-bond important in the vasculature. Nature. 466:992–995, 2010.
pubmed: 20725043 pmcid: 4117310 doi: 10.1038/nature09295
King, M. R., and D. A. Hammer. Multiparticle adhesive dynamics: Interactions between stably rolling cells. Biophys. J. 81:799–813, 2001.
pubmed: 11463626 pmcid: 1301554 doi: 10.1016/S0006-3495(01)75742-6
Li, H., K. Sampani, X. Zheng, D. P. Papageorgiou, A. Yazdani, M. O. Bernabeu, G. E. Karniadakis, and J. K. Sun. Predictive modelling of thrombus formation in diabetic retinal microaneurysms. R. Soc. Open Sci.7:201102, 2020.
pubmed: 32968536 pmcid: 7481715 doi: 10.1098/rsos.201102
Li, Z., M. K. Delaney, K. A. O’Brien, and X. Du. Signaling during platelet adhesion and activation. Arterioscler Thromb Vasc Biol. 30:2341–2349, 2010.
pubmed: 21071698 pmcid: 3085271 doi: 10.1161/ATVBAHA.110.207522
Link, K. G., M. G. Sorrells, N. A. Danes, K. B. Neeves, K. Leiderman, and A. L. Fogelson. A mathematical model of platelet aggregation in an extravascular injury under flow. Multiscale Model Simul. 18:1489–1524, 2020.
pubmed: 33867873 pmcid: 8051825 doi: 10.1137/20M1317785
Liu, Z. L., C. Bresette, C. K. Aidun, and D. N. Ku. SIPA in 10 milliseconds: VWF tentacles agglomerate and capture platelets under high shear. Blood Adv. 6:2453–2465, 2022.
pubmed: 34933342 pmcid: 9043924 doi: 10.1182/bloodadvances.2021005692
Michelson, A. D. Platelets (Third Edition): Academic Press; 2013.
Mody, N. A., and M. R. King. Platelet adhesive dynamics: part II: high shear-induced transient aggregation via GPIbα-vWF-GPIbα bridging. Biophys. J. 95:2556–2574, 2008.
pubmed: 18515386 pmcid: 2517035 doi: 10.1529/biophysj.107.128520
Mody, N. A., O. Lomakin, T. A. Doggett, T. G. Diacovo, and M. R. King. Mechanics of transient platelet adhesion to von Willebrand factor under flow. Biophys. J. 88:1432–1443, 2005.
pubmed: 15533923 doi: 10.1529/biophysj.104.047001
Plimpton, S., A. Thompson and P. Crozier. LAMMPS Molecular Dynamics Simulator. 2012.
Qi, Q. M., E. Dunne, I. Oglesby, I. Schoen, A. J. Ricco, D. Kenny, and E. S. G. Shaqfeh. In vitro measurement and modeling of platelet adhesion on VWF-coated surfaces in channel flow. Biophys. J. 116:1136–1151, 2019.
pubmed: 30824114 pmcid: 6428971 doi: 10.1016/j.bpj.2019.01.040
Ruggeri, Z. M. Platelet adhesion under flow. Microcirculation. 16:58–83, 2009.
pubmed: 19191170 pmcid: 3057446 doi: 10.1080/10739680802651477
Savage, B., F. Almus-Jacobs, and Z. M. Ruggeri. Specific synergy of multiple substrate–receptor interactions in platelet thrombus formation under flow. Cell. 94:657–666, 1998.
pubmed: 9741630 doi: 10.1016/S0092-8674(00)81607-4
Shankar, K. N., Y. Zhang, T. Sinno, and S. L. Diamond. A three-dimensional multiscale model for the prediction of thrombus growth under flow with single-platelet resolution. PLoS Comput. Biol.18:e1009850, 2022.
pubmed: 35089923 pmcid: 8827456 doi: 10.1371/journal.pcbi.1009850
Sheriff, J., and D. Bluestein. Platelet dynamics in blood flow. Dyn. Blood Cell Suspen. Microflows. 95:215–256, 2019.
doi: 10.1201/b21806-7
Sheriff, J., J. S. Soares, M. Xenos, J. Jesty, M. J. Slepian, and D. Bluestein. Evaluation of shear-induced platelet activation models under constant and dynamic shear stress loading conditions relevant to devices. Ann. Biomed. Eng. 41:1279–1296, 2013.
pubmed: 23400312 pmcid: 3640664 doi: 10.1007/s10439-013-0758-x
Sheriff, J., P. N. Wang, P. Zhang, Z. J. Zhang, Y. F. Deng, and D. Bluestein. In vitro measurements of shear-mediated platelet adhesion kinematics as analyzed through machine learning. Ann. Biomed. Eng. 49:3452–3464, 2021.
pubmed: 33973127 pmcid: 8578579 doi: 10.1007/s10439-021-02790-3
Spann, A. P., J. E. Campbell, S. R. Fitzgibbon, A. Rodriguez, A. P. Cap, L. H. Blackbourne, and E. S. G. Shaqfeh. The effect of hematocrit on platelet adhesion: experiments and simulations. Biophys. J. 111:577–588, 2016.
pubmed: 27508441 pmcid: 4982930 doi: 10.1016/j.bpj.2016.06.024
Stivala, S., S. Sorrentino, S. Gobbato, N. R. Bonetti, G. G. Camici, T. F. Lüscher, O. Medalia, and J. H. Beer. Glycoprotein Ib clustering in platelets can be inhibited by α-linolenic acid as revealed by cryo-electron tomography. Haematologica. 105:1660, 2020.
pubmed: 31439672 pmcid: 7271563 doi: 10.3324/haematol.2019.220988
Vahidkhah, K., S. L. Diamond, and P. Bagchi. Platelet dynamics in three-dimensional simulation of whole blood. Biophys. J. 106:2529–2540, 2014.
pubmed: 24896133 pmcid: 4052243 doi: 10.1016/j.bpj.2014.04.028
Wang, L., Z. Chen, J. Zhang, X. Zhang, and Z. J. Wu. Modeling clot formation of shear-injured platelets in flow by a dissipative particle dynamics method. Bulle. Math. Biol. 82:83, 2020.
doi: 10.1007/s11538-020-00760-9
White, J. G., M. D. Krumwiede, D. J. Cocking-Johnson, and G. Escolar. Dynamic redistribution of glycoprotein Ib/IX on surface-activated platelets: a second look. Am. J. Pathol. 147:1057, 1995.
pubmed: 7573351 pmcid: 1871007
Wu, Y. P., H. H. van Breugel, H. Lankhof, R. J. Wise, R. I. Handin, P. G. de Groot, and J. J. Sixma. Platelet adhesion to multimeric and dimeric von Willebrand factor and to collagen type III preincubated with von Willebrand factor. Arterioscler. Thromb. Vasc. Biol. 16:611–620, 1996.
pubmed: 8963717 doi: 10.1161/01.ATV.16.5.611
Wu, Z., Z. Xu, O. Kim, and M. Alber. Three-dimensional multi-scale model of deformable platelets adhesion to vessel wall in blood flow. Philos. Trans. A. 372:20130380, 2014.
doi: 10.1098/rsta.2013.0380
Yazdani, A., Y. Deng, H. Li, E. Javadi, Z. Li, S. Jamali, C. Lin, J. D. Humphrey, C. S. Mantzoros, and G. Em Karniadakis. Integrating blood cell mechanics, platelet adhesive dynamics and coagulation cascade for modelling thrombus formation in normal and diabetic blood. J. R. Soc. Interface. 18:20200834, 2021.
pubmed: 33530862 pmcid: 8086870 doi: 10.1098/rsif.2020.0834
Ye, T., H. Shi, N. Phan-Thien, and C. T. Lim. The key events of thrombus formation: platelet adhesion and aggregation. Biomech. Model. Mechanobiol. 19:943–955, 2020.
pubmed: 31754949 doi: 10.1007/s10237-019-01262-x
Ye, T., X. Zhang, G. Li, and S. Wang. Biomechanics in thrombus formation from direct cellular simulations. Physical Review E.102:042410, 2020.
pubmed: 33212741 doi: 10.1103/PhysRevE.102.042410
Zhang, P., L. Zhang, M. J. Slepian, Y. Deng, and D. Bluestein. A multiscale biomechanical model of platelets: Correlating with in-vitro results. J Biomech. 50:26–33, 2017.
pubmed: 27894676 doi: 10.1016/j.jbiomech.2016.11.019
Zhang, P., N. Zhang, C. Gao, L. Zhang, Y. Gao, Y. Deng, and D. Bluestein. Scalability test of multiscale fluid-platelet model for three top supercomputers. Comput Phys Commun. 204:132–140, 2016.
pubmed: 27570250 pmcid: 4999248 doi: 10.1016/j.cpc.2016.03.019
Zhang, Z., P. Zhang, C. Han, G. Cong, C.-C. Yang, and Y. Deng. Online machine learning for accelerating molecular dynamics modeling of cells. Front. Mol. Biosci. 8:1317, 2022.
doi: 10.3389/fmolb.2021.812248
Zhang, Z., P. Zhang, P. Wang, J. Sheriff, D. Bluestein, and Y. Deng. Rapid analysis of streaming platelet images by semi-unsupervised learning. Comput. Med. Imaging Graph.89:101895, 2021.
pubmed: 33798915 pmcid: 8612242 doi: 10.1016/j.compmedimag.2021.101895
Zheng, X., A. Yazdani, H. Li, J. D. Humphrey, and G. E. Karniadakis. A three-dimensional phase-field model for multiscale modeling of thrombus biomechanics in blood vessels. PLoS Comput. Biol.16:e1007709, 2020.
pubmed: 32343724 pmcid: 7224566 doi: 10.1371/journal.pcbi.1007709

Auteurs

Peineng Wang (P)

Department of Biomedical Engineering, T08-50 Health Sciences Center, Stony Brook University, Stony Brook, NY, 11794-8084, USA.

Jawaad Sheriff (J)

Department of Biomedical Engineering, T08-50 Health Sciences Center, Stony Brook University, Stony Brook, NY, 11794-8084, USA.

Peng Zhang (P)

Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA.

Yuefan Deng (Y)

Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA.

Danny Bluestein (D)

Department of Biomedical Engineering, T08-50 Health Sciences Center, Stony Brook University, Stony Brook, NY, 11794-8084, USA. danny.bluestein@stonybrook.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH