Unsteady natural convection flow of blood Casson nanofluid (Au) in a cylinder: nano-cryosurgery applications.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
09 04 2023
09 04 2023
Historique:
received:
18
10
2022
accepted:
16
02
2023
medline:
11
4
2023
entrez:
9
4
2023
pubmed:
10
4
2023
Statut:
epublish
Résumé
Nano-cryosurgery is one of the effective ways to treat cancerous cells with minimum harm to healthy adjacent cells. Clinical experimental research consumes time and cost. Thus, developing a mathematical simulation model is useful for time and cost-saving, especially in designing the experiment. Investigating the Casson nanofluid's unsteady flow in an artery with the convective effect is the goal of the current investigation. The nanofluid is considered to flow in the blood arteries. Therefore, the slip velocity effect is concerned. Blood is a base fluid with gold (Au) nanoparticles dispersed in the base fluid. The resultant governing equations are solved by utilising the Laplace transform regarding the time and the finite Hankel transform regarding the radial coordinate. The resulting analytical answers for velocity and temperature are then displayed and visually described. It is found that the temperature enhancement occurred by arising nanoparticles volume fraction and time parameter. The blood velocity increases as the slip velocity, time parameter, thermal Grashof number, and nanoparticles volume fraction increase. Whereas the velocity decreases with the Casson parameter. Thus, by adding Au nanoparticles, the tissue thermal conductivity enhanced which has the consequence of freezing the tissue in nano-cryosurgery treatment significantly.
Identifiants
pubmed: 37032402
doi: 10.1038/s41598-023-30129-6
pii: 10.1038/s41598-023-30129-6
pmc: PMC10083174
doi:
Substances chimiques
Gold
7440-57-5
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
5799Informations de copyright
© 2023. The Author(s).
Références
Sci Rep. 2022 Oct 19;12(1):17419
pubmed: 36261589
Nanomedicine. 2008 Mar;4(1):79-87
pubmed: 18155645
Colloids Surf B Biointerfaces. 2021 Jan;197:111395
pubmed: 33045544
PLoS One. 2018 Jan 5;13(1):e0188656
pubmed: 29304161
Nanomedicine. 2012 Nov;8(8):1233-41
pubmed: 22406189
Sci Rep. 2021 Oct 18;11(1):20601
pubmed: 34663851
Sci Rep. 2022 Nov 3;12(1):18595
pubmed: 36329055
Sci Rep. 2020 May 20;10(1):8327
pubmed: 32433475
J Nanosci Nanotechnol. 2009 Aug;9(8):4521-42
pubmed: 19928115
Sci Rep. 2022 Jul 25;12(1):12656
pubmed: 35879600
Nanoscale Res Lett. 2021 May 20;16(1):88
pubmed: 34014432
Comput Methods Programs Biomed. 2020 Apr;186:105197
pubmed: 31805484
Nanotechnol Sci Appl. 2020 Jul 24;13:47-59
pubmed: 32801669
Sci Rep. 2021 Jun 7;11(1):11964
pubmed: 34099739
Biophys J. 1971 Mar;11(3):252-64
pubmed: 5573368
Sci Rep. 2021 Dec 9;11(1):23736
pubmed: 34887469
Heliyon. 2019 Dec 30;6(1):e03076
pubmed: 31909255
Sci Rep. 2022 Jul 26;12(1):12704
pubmed: 35882964