[Neuroimmunology of allergic rhinitis : Part 1: Cellular and humoral basic principles].
Neuroimmunologie der allergischen Rhinitis : Teil 1: Zelluläre und humorale Grundlagen.
Allergy and immunology
Intracellular signaling peptides and proteins
Ion channels
Neurotransmitter
Rhinorrhea
Journal
HNO
ISSN: 1433-0458
Titre abrégé: HNO
Pays: Germany
ID NLM: 2985099R
Informations de publication
Date de publication:
May 2023
May 2023
Historique:
accepted:
09
02
2023
medline:
26
4
2023
pubmed:
12
4
2023
entrez:
11
4
2023
Statut:
ppublish
Résumé
Allergic rhinitis (AR) is a very common disease with a high prevalence worldwide. It is an IgE-mediated type 2 inflammatory disease following exposure to inhalant allergens. A multitude of different neuropeptides including substance P, vasoactive intestinal peptide (VIP), calcitonin gene-related peptide (CGRP), nerve growth factor (NGF), and neuromedin U (NMU) can be released via peripheral axon or central reflexes, interact with immune cells, and thus contribute to neurogenic inflammation which causes the nasal hyperreactivity (NHR) characteristic of AR. Independent production of neuroendocrine hormones and neuropeptides by immune cells has also been demonstrated. Neuro-immune cell units arise when immune and neuronal cells colocalize, for which typical anatomic regions are, e.g., the mast cell-nerve functional unit. The focus of this review is the elucidation of neuroimmune communication mechanisms in AR. Die allergische Rhinitis (AR) ist eine sehr häufige Erkrankung mit weltweit hoher Prävalenz. Sie ist eine IgE-vermittelte und entzündungsbedingte Typ-2-Erkrankung nach Exposition gegenüber inhalativen Allergenen. Eine Vielzahl von Neuropeptiden wie Substanz P (SP), vasoaktives intestinales Peptid (VIP), „calcitonin gene-related peptide“ (CGRP), Nervenwachstumsfaktor (NGF) und Neuromedin U (NMU) können über periphere Axonreflexe oder zentrale Reflexe freigesetzt werden, mit Immunzellen interagieren und sind so an einer neurogenen Entzündung beteiligt, die zur nasalen Hyperreaktivität (NHR) der AR führt. Die eigenständige Produktion von neuroendokrinen Hormonen und Neuropeptiden durch Immunzellen wurde ebenfalls nachgewiesen. Neuroimmunzellverbände entstehen, wenn Immun- und neuronale Zellen kolokalisieren. Typische anatomische Regionen dafür sind beispielsweise die Nerv-Mastzellen-Einheit. In dieser Übersicht liegt der Fokus auf der Ausarbeitung neuroimmunologischer Kommunikationsmechanismen der AR.
Autres résumés
Type: Publisher
(ger)
Die allergische Rhinitis (AR) ist eine sehr häufige Erkrankung mit weltweit hoher Prävalenz. Sie ist eine IgE-vermittelte und entzündungsbedingte Typ-2-Erkrankung nach Exposition gegenüber inhalativen Allergenen. Eine Vielzahl von Neuropeptiden wie Substanz P (SP), vasoaktives intestinales Peptid (VIP), „calcitonin gene-related peptide“ (CGRP), Nervenwachstumsfaktor (NGF) und Neuromedin U (NMU) können über periphere Axonreflexe oder zentrale Reflexe freigesetzt werden, mit Immunzellen interagieren und sind so an einer neurogenen Entzündung beteiligt, die zur nasalen Hyperreaktivität (NHR) der AR führt. Die eigenständige Produktion von neuroendokrinen Hormonen und Neuropeptiden durch Immunzellen wurde ebenfalls nachgewiesen. Neuroimmunzellverbände entstehen, wenn Immun- und neuronale Zellen kolokalisieren. Typische anatomische Regionen dafür sind beispielsweise die Nerv-Mastzellen-Einheit. In dieser Übersicht liegt der Fokus auf der Ausarbeitung neuroimmunologischer Kommunikationsmechanismen der AR.
Identifiants
pubmed: 37041304
doi: 10.1007/s00106-023-01292-z
pii: 10.1007/s00106-023-01292-z
doi:
Substances chimiques
Neuropeptides
0
Vasoactive Intestinal Peptide
37221-79-7
Calcitonin Gene-Related Peptide
JHB2QIZ69Z
Types de publication
Review
English Abstract
Journal Article
Langues
ger
Sous-ensembles de citation
IM
Pagination
337-346Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Medizin Verlag GmbH, ein Teil von Springer Nature.
Références
Gelincik A, Aydın F, Ozerman B et al (2012) Enhanced nerve growth factor expression by mast cells does not differ significantly between idiopathic and allergic rhinitis. Ann Allergy Asthma Immunol 108:396–401. https://doi.org/10.1016/j.anai.2012.04.006
doi: 10.1016/j.anai.2012.04.006
pubmed: 22626591
Klimek L, Bachert C, Pfaar O et al (2019) ARIA guideline 2019: treatment of allergic rhinitis in the German health system. Allergol Sel 3:22–50. https://doi.org/10.5414/ALX02120E
doi: 10.5414/ALX02120E
Klimek L, Brehler R, Hamelmann E et al (2019) Evolution of subcutaneous allergen immunotherapy (part 1): from first developments to mechanism-driven therapy concepts. Allergo J Int 28:78–95
doi: 10.1007/s40629-019-0092-4
Klimek L, Brehler R, Hamelmann E et al (2019) Development of subcutaneous allergen immunotherapy (part 2): preventive aspects and innovations. Allergo J Int 28:107–119
doi: 10.1007/s40629-019-0097-z
Sanico AM, Stanisz AM, Gleeson TD et al (2000) Nerve growth factor expression and release in allergic inflammatory disease of the upper airways. Am J Respir Crit Care Med 161:1631–1635. https://doi.org/10.1164/ajrccm.161.5.9908028
doi: 10.1164/ajrccm.161.5.9908028
pubmed: 10806167
Wang XD, Zheng M, Lou HF et al (2016) An increased prevalence of self-reported allergic rhinitis in major Chinese cities from 2005 to 2011. Allergy 71:1170–1180. https://doi.org/10.1111/all.12874
doi: 10.1111/all.12874
pubmed: 26948849
Wheatley LM, Togias A (2015) Clinical practice. Allergic rhinitis. N Engl J Med 372:456–463. https://doi.org/10.1056/NEJMcp1412282
doi: 10.1056/NEJMcp1412282
pubmed: 25629743
pmcid: 4324099
Wu X, Myers AC, Goldstone AC et al (2006) Localization of nerve growth factor and its receptors in the human nasal mucosa. J Allergy Clin Immunol 118:428–433. https://doi.org/10.1016/j.jaci.2006.04.037
doi: 10.1016/j.jaci.2006.04.037
pubmed: 16890768
Okubo K, Kurono Y, Ichimura K et al (2020) Japanese guidelines for allergic rhinitis 2020. Allergol Int 69:331–345. https://doi.org/10.1016/j.alit.2020.04.001
doi: 10.1016/j.alit.2020.04.001
pubmed: 32473790
Galli SJ, Tsai M, Piliponsky AM (2008) The development of allergic inflammation. Nature 454:445–454. https://doi.org/10.1038/nature07204
doi: 10.1038/nature07204
pubmed: 18650915
pmcid: 3573758
Delgado M, Pozo D, Ganea D (2004) The significance of vasoactive intestinal peptide in immunomodulation. Pharmacol Rev 56:249–290. https://doi.org/10.1124/pr.56.2.7
doi: 10.1124/pr.56.2.7
pubmed: 15169929
Schiller M, Ben-Shaanan TL, Rolls A (2020) Neuronal regulation of immunity: why, how and where? Nat Rev Immunol 21:20–36. https://doi.org/10.1038/s41577-020-0387-1
doi: 10.1038/s41577-020-0387-1
pubmed: 32811994
Dramburg S, Walter U, Becker S et al (2021) Telemedicine in allergology: practical aspects: A position paper of the Association of German Allergists (AeDA). Allergo J Int 30:119–129. https://doi.org/10.1007/s40629-021-00167-5
doi: 10.1007/s40629-021-00167-5
pubmed: 33758744
pmcid: 7977487
Klimek L, Bergmann KC, Brehler R et al (2021) Practical handling of allergic reactions to COVID-19 vaccines: A position paper from German and Austrian Allergy Societies AeDA, DGAKI, GPA and OGAI. Allergo J Int 30:79–95. https://doi.org/10.1007/s40629-021-00165-7
doi: 10.1007/s40629-021-00165-7
pubmed: 33898162
pmcid: 8054127
Mahler V, Bonertz A, Ruoff C et al (2019) What we learned from TAO—10 years of German therapy allergen ordinance. Allergo J Int 28:330–337
doi: 10.1007/s40629-019-0101-7
Roth-Walter F (2021) Compensating functional iron deficiency in patients with allergies with targeted micronutrition. Allergo J Int 30:130–134. https://doi.org/10.1007/s40629-021-00171-9
doi: 10.1007/s40629-021-00171-9
Ullrich D (2019) Safety of a high-dose house dust mite allergoid in pediatric patients. Allergo J Int 28:96–98. https://doi.org/10.1007/s40629-018-0084-9
doi: 10.1007/s40629-018-0084-9
Undem BJ, Taylor-Clark T (2014) Mechanisms underlying the neuronal-based symptoms of allergy. J Allergy Clin Immunol 133:1521–1534. https://doi.org/10.1016/j.jaci.2013.11.027
doi: 10.1016/j.jaci.2013.11.027
pubmed: 24433703
pmcid: 6483074
Velasco E, Delicado-Miralles M, Hellings PW et al (2022) Epithelial and sensory mechanisms of nasal hyperreactivity. Allergy 77:1450–1463. https://doi.org/10.1111/all.15259
doi: 10.1111/all.15259
pubmed: 35174893
Brierley SM, Linden DR (2014) Neuroplasticity and dysfunction after gastrointestinal inflammation. Nat Rev Gastroenterol Hepatol 11:611–627. https://doi.org/10.1038/nrgastro.2014.103
doi: 10.1038/nrgastro.2014.103
pubmed: 25001973
Van Gerven L, Steelant B, Hellings PW (2018) Nasal hyperreactivity in rhinitis: A diagnostic and therapeutic challenge. Allergy 73:1784–1791. https://doi.org/10.1111/all.13453
doi: 10.1111/all.13453
pubmed: 29624710
Hennel M, Brozmanova M, Kollarik M (2015) Cough reflex sensitization from esophagus and nose. Pulm Pharmacol Ther 35:117–121. https://doi.org/10.1016/j.pupt.2015.10.007
doi: 10.1016/j.pupt.2015.10.007
pubmed: 26498387
pmcid: 4690762
Braunstahl GJ, Fokkens WJ, Overbeek SE et al (2003) Mucosal and systemic inflammatory changes in allergic rhinitis and asthma: a comparison between upper and lower airways. Clin Exp Allergy 33:579–587. https://doi.org/10.1046/j.1365-2222.2003.01652.x
doi: 10.1046/j.1365-2222.2003.01652.x
pubmed: 12752585
Baluk P (1997) Neurogenic inflammation in skin and airways. J Investig Dermatol Symp Proc 2:76–81. https://doi.org/10.1038/jidsymp.1997.15
doi: 10.1038/jidsymp.1997.15
pubmed: 9487020
Skaper SD (2017) Nerve growth factor: a neuroimmune crosstalk mediator for all seasons. Immunology 151:1–15. https://doi.org/10.1111/imm.12717
doi: 10.1111/imm.12717
pubmed: 28112808
pmcid: 5382350
Woolf CJ (2010) Central sensitization: implications for the diagnosis and treatment of pain. Pain 152:S2–S15. https://doi.org/10.1016/j.pain.2010.09.030
doi: 10.1016/j.pain.2010.09.030
pubmed: 20961685
pmcid: 3268359
Meng Y, Lu H, Wang C et al (2021) Naso-ocular neuropeptide interactions in allergic rhinoconjunctivitis, rhinitis, and conjunctivitis. World Allergy Organ J 14:100540. https://doi.org/10.1016/j.waojou.2021.100540
doi: 10.1016/j.waojou.2021.100540
pubmed: 34035875
pmcid: 8131918
Kabata H, Artis D (2019) Neuro-immune crosstalk and allergic inflammation. J Clin Invest 129:1475–1482. https://doi.org/10.1172/JCI124609
doi: 10.1172/JCI124609
pubmed: 30829650
pmcid: 6436850
Raap U, Sumbayev VV, Gibbs BF (2015) The role of basophils in allergic inflammation. Allergo J 24:152–157
doi: 10.1007/s40629-015-0064-2
Anonym (2017) Neuroimmune communication. Nat Neurosci 20:127–127. https://doi.org/10.1038/nn.4496
doi: 10.1038/nn.4496
Douglas SD, Leeman SE (2010) Neurokinin‑1 receptor: functional significance in the immune system in reference to selected infections and inflammation. Ann NY Acad Sci 1217:83–95. https://doi.org/10.1111/j.1749-6632.2010.05826.x
doi: 10.1111/j.1749-6632.2010.05826.x
pubmed: 21091716
Ma Y, Liu C, Xi G et al (2022) Bioinformatic analysis and cellular assays identify substance P influencing th17/Treg differentiation via the MyD88 pathway as a potential contributor to the progression of asthma and allergic rhinitis. Dis Markers 2022:3843954. https://doi.org/10.1155/2022/3843954
doi: 10.1155/2022/3843954
pubmed: 35190755
pmcid: 8858040
Douglas SD, Leeman SE (2018) Is substance P a nasal epithelial neuropeptide? J Allergy Clin Immunol 142:1677. https://doi.org/10.1016/j.jaci.2018.05.034
doi: 10.1016/j.jaci.2018.05.034
pubmed: 29958676
Dinh QT, Groneberg DA, Mingomataj E et al (2003) Expression of substance P and vanilloid receptor (VR1) in trigeminal sensory neurons projecting to the mouse nasal mucosa. Neuropeptides 37:245–250. https://doi.org/10.1016/s0143-4179(03)00065-9
doi: 10.1016/s0143-4179(03)00065-9
pubmed: 12906843
McDonald JL, Smith PK, Smith CA et al (2016) Effect of acupuncture on house dust mite specific IgE, substance P, and symptoms in persistent allergic rhinitis. Ann Allergy Asthma Immunol 116:497–505. https://doi.org/10.1016/j.anai.2016.04.002
doi: 10.1016/j.anai.2016.04.002
pubmed: 27156748
Larsson O, Tengroth L, Xu Y et al (2017) Substance P represents a novel first-line defense mechanism in the nose. J Allergy Clin Immunol 141:128–136.e3. https://doi.org/10.1016/j.jaci.2017.01.021
doi: 10.1016/j.jaci.2017.01.021
pubmed: 28219705
Huang F, Yin J‑N, Wang H‑B et al (2017) Association of imbalance of effector T cells and regulatory cells with the severity of asthma and allergic rhinitis in children. Allergy Asthma Proc 38:70–77. https://doi.org/10.2500/aap.2017.38.4076
doi: 10.2500/aap.2017.38.4076
pubmed: 29046188
Ohnmacht C (2016) Microbiota, regulatory T cell subsets, and allergic disorders. Allergo J Int 25:114–123. https://doi.org/10.1007/s40629-016-0118-0
doi: 10.1007/s40629-016-0118-0
pubmed: 27656354
pmcid: 5016534
Ono S, Kabashima K (2015) Novel insights into the role of immune cells in skin and inducible skin-associated lymphoid tissue (iSALT). Allergo J Int 24:170–179. https://doi.org/10.1007/s40629-015-0065-1
doi: 10.1007/s40629-015-0065-1
pubmed: 27069837
pmcid: 4792357
Moattari CR, Granstein RD (2021) Neuropeptides and neurohormones in immune, inflammatory and cellular responses to ultraviolet radiation. Acta Physiol 232:e13644. https://doi.org/10.1111/apha.13644
doi: 10.1111/apha.13644
McCary C, Tancowny BP, Catalli A et al (2010) Substance P downregulates expression of the high affinity IgE receptor (FcepsilonRI) by human mast cells. J Neuroimmunol 220:17–24. https://doi.org/10.1016/j.jneuroim.2009.12.006
doi: 10.1016/j.jneuroim.2009.12.006
pubmed: 20117843
pmcid: 3712287
Yokota E, Kuyama S, Ogawa M et al (2008) Substance P is involved in the effect of histamine H3 receptor agonist, Sch 50971 on nasal allergic symptoms in mice. Int Immunopharmacol 8:1083–1088. https://doi.org/10.1016/j.intimp.2008.03.018
doi: 10.1016/j.intimp.2008.03.018
pubmed: 18550011
Eyerich K, Eyerich S (2015) Th22 cells in allergic disease. Allergo J Int 24:1–7. https://doi.org/10.1007/s40629-015-0039-3
doi: 10.1007/s40629-015-0039-3
pubmed: 26120541
pmcid: 4479457
Fischer A, Wussow A, Cryer A et al (2004) Neuronal plasticity in persistent perennial allergic rhinitis. J Occup Environ Med 47:20–25. https://doi.org/10.1097/01.jom.0000150238.77663.49
doi: 10.1097/01.jom.0000150238.77663.49
Gonzalez-Rey E, Anderson P, Delgado M (2007) Emerging roles of vasoactive intestinal peptide: a new approach for autoimmune therapy. Ann Rheum Dis 66(Suppl 3):iii70–iii76. https://doi.org/10.1136/ard.2007.078519
doi: 10.1136/ard.2007.078519
pubmed: 17934101
pmcid: 2095290
Verma AK, Manohar M, Upparahalli Venkateshaiah S et al (2017) Neuroendocrine cells derived chemokine vasoactive intestinal polypeptide (VIP) in allergic diseases. Cytokine Growth Factor Rev 38:37–48. https://doi.org/10.1016/j.cytogfr.2017.09.002
doi: 10.1016/j.cytogfr.2017.09.002
pubmed: 28964637
pmcid: 5705463
Huber M, Lohoff M (2015) Change of paradigm: CD8+ T cells as important helper for CD4+ T cells during asthma and autoimmune encephalomyelitis. Allergo J Int 24:8–15. https://doi.org/10.1007/s40629-015-0038-4
doi: 10.1007/s40629-015-0038-4
pubmed: 26120542
pmcid: 4479451
El-Shazly AE, Begon DY, Kustermans G et al (2012) Novel association between vasoactive intestinal peptide and CRTH2 receptor in recruiting eosinophils: a possible biochemical mechanism for allergic eosinophilic inflammation of the airways. J Biol Chem 288:1374–1384. https://doi.org/10.1074/jbc.M112.422675
doi: 10.1074/jbc.M112.422675
pubmed: 23168411
pmcid: 3543020
Kim D‑H, Park I‑H, Cho J‑S et al (2011) Alterations of vasoactive intestinal polypeptide receptors in allergic rhinitis. Am J Rhinol Allergy 25:e44–47. https://doi.org/10.2500/ajra.2011.25.3568
doi: 10.2500/ajra.2011.25.3568
pubmed: 21711977
Jowett GM, Neves JF (2018) Commentary: Neuronal regulation of type 2 innate lymphoid cells via neuromedin U. Front Pharmacol 9:230. https://doi.org/10.3389/fphar.2018.00230
doi: 10.3389/fphar.2018.00230
pubmed: 29593546
pmcid: 5861189
Klose CSN, Mahlakõiv T, Moeller JB et al (2017) The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation. Nature 549:282–286. https://doi.org/10.1038/nature23676
doi: 10.1038/nature23676
pubmed: 28869965
pmcid: 6066372
Cardoso V, Chesné J, Ribeiro H et al (2017) Neuronal regulation of type 2 innate lymphoid cells via neuromedin U. Nature 549:277–281. https://doi.org/10.1038/nature23469
doi: 10.1038/nature23469
pubmed: 28869974
pmcid: 5714273
Wallrapp A, Riesenfeld SJ, Burkett PR et al (2017) The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature 549:351–356. https://doi.org/10.1038/nature24029
doi: 10.1038/nature24029
pubmed: 28902842
pmcid: 5746044
Nagashima H, Mahlakõiv T, Shih H‑Y et al (2019) Neuropeptide CGRP limits group 2 innate lymphoid cell responses and constrains type 2 inflammation. Immunity 51:682–695.e686. https://doi.org/10.1016/j.immuni.2019.06.009
doi: 10.1016/j.immuni.2019.06.009
pubmed: 31353223
pmcid: 6801073
Matsuo Y, Yanase Y, Irifuku R et al (2018) Neuromedin U directly induces degranulation of skin mast cells, presumably via MRGPRX2. Allergy 73:2256–2260. https://doi.org/10.1111/all.13555
doi: 10.1111/all.13555
pubmed: 29987892
Nockher WA, Renz H (2003) Neurotrophins in inflammatory lung diseases: modulators of cell differentiation and neuroimmune interactions. Cytokine Growth Factor Rev 14:559–578. https://doi.org/10.1016/s1359-6101(03)00071-6
doi: 10.1016/s1359-6101(03)00071-6
pubmed: 14563357
Manti S, Brown P, Perez MK et al (2016) The role of neurotrophins in inflammation and allergy. Vitam Horm 104:313–341. https://doi.org/10.1016/bs.vh.2016.10.010
doi: 10.1016/bs.vh.2016.10.010
pubmed: 28215300
Raap U, Braunstahl G‑J (2010) The role of neurotrophins in the pathophysiology of allergic rhinitis. Curr Opin Allergy Clin Immunol 10:8–13. https://doi.org/10.1097/ACI.0b013e328334f5de
doi: 10.1097/ACI.0b013e328334f5de
pubmed: 19935061
Bresciani M, Lalibertè F, Lalibertè MF et al (2009) Nerve growth factor localization in the nasal mucosa of patients with persistent allergic rhinitis. Allergy 64:112–117. https://doi.org/10.1111/j.1398-9995.2008.01831.x
doi: 10.1111/j.1398-9995.2008.01831.x
pubmed: 19076929
Iyengar S, Johnson KW, Ossipov MH et al (2019) CGRP and the trigeminal system in migraine. Headache 59:659–681. https://doi.org/10.1111/head.13529
doi: 10.1111/head.13529
pubmed: 30982963
pmcid: 6593989
Vasko MR, Habashy Malty R, Guo C et al (2014) Nerve growth factor mediates a switch in intracellular signaling for PGE2-induced sensitization of sensory neurons from protein kinase A to Epac. PLoS One 9:e104529. https://doi.org/10.1371/journal.pone.0104529
doi: 10.1371/journal.pone.0104529
pubmed: 25126967
pmcid: 4134201