Near-infrared ratiometric fluorescent strategy for butyrylcholinesterase activity and its application in the detection of pesticide residue in food samples and biological imaging.

Biological imaging Butyrylcholinesterase Near infrared Pesticide residue detection Ratiometric fluorescence

Journal

Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
ISSN: 1873-3557
Titre abrégé: Spectrochim Acta A Mol Biomol Spectrosc
Pays: England
ID NLM: 9602533

Informations de publication

Date de publication:
05 Sep 2023
Historique:
received: 10 01 2023
revised: 18 03 2023
accepted: 06 04 2023
medline: 15 5 2023
pubmed: 13 4 2023
entrez: 12 4 2023
Statut: ppublish

Résumé

Butyrylcholinesterase (BChE) is an essential esterase synthesized by the liver, and its level is considered as a vital index for health evaluation. Therefore, it is of great need to develop a highly sensitive and selective tool to monitor BChE activity, which remains a considerable challenge on account of its usage in complex biological systems. A near-infrared (NIR) fluorescent probe was elaborated in this work, employing cyanine backbone to provide the intrinsic NIR fluorescence and avoid interference from bioluminescence. There presented an intriguing structural transformation upon the sensing event to shrink the conjugation in this protocol, leading to an eye-catching fluorescence change from NIR (816 nm) to red (637 nm) region, which gave rise to the proposed ratiometric assay. After an overall investigation, this receptor was verified to be applicable in a wide bio-area with ratiometric pattern, including the cellular level and slice platform. It was worth mentioning that this receptor was also discovered to be capable of monitoring pesticide dichlorvos (DDVP) residue in food samples with high sensitivity and accuracy, with significant potential to be developed as an alternative candidate for monitoring environmental pollution.

Identifiants

pubmed: 37043836
pii: S1386-1425(23)00404-3
doi: 10.1016/j.saa.2023.122719
pii:
doi:

Substances chimiques

Butyrylcholinesterase EC 3.1.1.8
Fluorescent Dyes 0
Pesticide Residues 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

122719

Informations de copyright

Copyright © 2023 Elsevier B.V. All rights reserved.

Déclaration de conflit d'intérêts

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Auteurs

Wei Yuan (W)

Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.

Chenyang Wan (C)

Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.

Jingjing Zhang (J)

Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.

Qisheng Li (Q)

College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.

Peng Zhang (P)

Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.

Ke Zheng (K)

Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.

Qian Zhang (Q)

Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China. Electronic address: zhangq_chem@qust.edu.cn.

Caifeng Ding (C)

Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China. Electronic address: dingcaifeng@qust.edu.cn.

Articles similaires

Risk Assessment Plant Leaves Isomerism Humans Stereoisomerism
Humans Female Prefrontal Cortex Male Spectroscopy, Near-Infrared

Molecular probes for tracking lipid droplet membrane dynamics.

Lingxiu Kong, Qingjie Bai, Cuicui Li et al.
1.00
Lipid Droplets Molecular Probes Humans Membrane Proteins Animals
Humans Neurons Microscopy, Fluorescence, Multiphoton Capsules Polymers

Classifications MeSH