Clinically relevant bidirectional drug-drug interaction between midostaurin and voriconazole.


Journal

British journal of clinical pharmacology
ISSN: 1365-2125
Titre abrégé: Br J Clin Pharmacol
Pays: England
ID NLM: 7503323

Informations de publication

Date de publication:
07 2023
Historique:
revised: 20 03 2023
received: 16 01 2023
accepted: 25 03 2023
medline: 19 6 2023
pubmed: 14 4 2023
entrez: 13 4 2023
Statut: ppublish

Résumé

Midostaurin is often prescribed with azole antifungals in patients with leukaemia, either for aspergillosis prophylaxis or treatment. Midostaurin is extensively metabolized by cytochrome (CYP) 3A4. In addition, it inhibits and induces various CYPs at therapeutic concentrations. Thus, midostaurin is associated with a high potential for drug-drug interactions (DDIs), both as a substrate (victim) and as a perpetrator. However, data on midostaurin as a perpetrator of DDIs are scarce, as most pharmacokinetic studies have focused on midostaurin as a victim drug. We report a clinically relevant bidirectional DDI between midostaurin and voriconazole during induction treatment. A 49-year-old woman with acute myeloid leukaemia developed invasive pulmonary aspergillosis after induction chemotherapy. She was treated with voriconazole at standard dosage. Six days after starting midostaurin, she developed visual hallucinations with a concurrent sharp increase in voriconazole blood concentration (C

Identifiants

pubmed: 37050863
doi: 10.1111/bcp.15743
doi:

Substances chimiques

Voriconazole JFU09I87TR
Antifungal Agents 0
midostaurin ID912S5VON

Types de publication

Case Reports

Langues

eng

Sous-ensembles de citation

IM

Pagination

2304-2308

Informations de copyright

© 2023 The Authors. British Journal of Clinical Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

Références

Accessed March 9, 2023. https://www.medicines.org.uk/emc/product/9134/smpc/print#INDICATIONS
Food and Drug Administration. Accessed January 13, 2023. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/207997Orig1Orig2s000ClinPharmR.pdf
Brüggemann RJ, Verheggen R, Boerrigter E, et al. Management of drug-drug interactions of targeted therapies for haematological malignancies and triazole antifungal drugs. Lancet Haematol. 2022;9(1):e58-e72. doi:10.1016/S2352-3026(21)00232-5
Dutreix C, Munarini F, Lorenzo S, Roesel J, Wang Y. Investigation into CYP3A4-mediated drug-drug interactions on midostaurin in healthy volunteers. Cancer Chemother Pharmacol. 2013;72(6):1223-1234. doi:10.1007/s00280-013-2287-6
Menna P, Salvatorelli E, Del Principe MI, et al. Choosing antifungals for the midostaurin-treated patient: does CYP3A4 outweigh recommendations? A brief insight from real life. Chemotherapy. 2021;66(1-2):47-52. doi:10.1159/000513989
Stemler J, de Jonge N, Skoetz N, et al. Antifungal prophylaxis in adult patients with acute myeloid leukaemia treated with novel targeted therapies: a systematic review and expert consensus recommendation from the European Hematology Association [published correction appears in lancet Haematol. 2022 Jun;9(6):e398]. Lancet Haematol. 2022;9(5):e361-e373. doi:10.1016/S2352-3026(22)00073-4
Maertens JA, Girmenia C, Brüggemann RJ, et al. European guidelines for primary antifungal prophylaxis in adult haematology patients: summary of the updated recommendations from the European conference on infections in Leukaemia. J Antimicrob Chemother. 2018;73(12):3221-3230. doi:10.1093/jac/dky286
Kably B, Launay M, Derobertmasure A, Lefeuvre S, Dannaoui E, Billaud EM. Antifungal drugs TDM: trends and update. Ther Drug Monit. 2022;44(1):166-197. doi:10.1097/FTD.0000000000000952
Decosterd LA, Rochat B, Pesse B, et al. Multiplex ultra-performance liquid chromatography-tandem mass spectrometry method for simultaneous quantification in human plasma of fluconazole, itraconazole, hydroxyitraconazole, posaconazole, voriconazole, voriconazole-N-oxide, anidulafungin, and caspofungin. Antimicrob Agents Chemother. 2010;54(12):5303-5315. doi:10.1128/AAC.00404-10
Stone RM, Mandrekar SJ, Sanford BL, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med. 2017;377(5):454-464. doi:10.1056/NEJMoa1614359
Daver N, Schlenk RF, Russell NH, Levis MJ. Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia. 2019;33(2):299-312. doi:10.1038/s41375-018-0357-9
Stansfield LC, Pollyea DA. Midostaurin: a new oral agent targeting FMS-like tyrosine kinase 3-mutant acute myeloid leukemia. Pharmacotherapy. 2017;37(12):1586-1599. doi:10.1002/phar.2039
Kim ES. Midostaurin: first global approval. Drugs. 2017;77(11):1251-1259. doi:10.1007/s40265-017-0779-0
European Medicines Agency. Accessed January 13, 2023. https://www.ema.europa.eu/en/documents/assessment-report/rydapt-epar-public-assessment-report_en.pdf
He H, Tran P, Gu H, et al. Midostaurin, a novel protein kinase inhibitor for the treatment of acute myelogenous leukemia: insights from human absorption, metabolism, and excretion studies of a BDDCS II drug. Drug Metab Dispos. 2017;45(5):540-555. doi:10.1124/dmd.116.072744
Gu H, Dutreix C, Rebello S, et al. Simultaneous physiologically based pharmacokinetic (PBPK) modeling of parent and active metabolites to investigate complex CYP3A4 drug-drug interaction potential: a case example of midostaurin. Drug Metab Dispos. 2018;46(2):109-121. doi:10.1124/dmd.117.078006
Mancini R, LaMontagne L, Williams T, Kreisle W, Petersen F. Midostaurin and cyclosporine drug interaction: a case report. J Clin Pharm Ther. 2020;45(2):384-387. doi:10.1111/jcpt.13077
Horn JR, Hansten PD, Chan LN. Proposal for a new tool to evaluate drug interaction cases. Ann Pharmacother. 2007;41(4):674-680. doi:10.1345/aph.1H423
Stemler J, Koehler P, Maurer C, Müller C, Cornely OA. Antifungal prophylaxis and novel drugs in acute myeloid leukemia: the midostaurin and posaconazole dilemma. Ann Hematol. 2020;99(7):1429-1440. doi:10.1007/s00277-020-04107-1
Alexander SPH, Christopoulos A, Davenport AP, et al. The concise guide to pharmacology 2019/20: G protein-coupled receptors. Br J Pharmacol. 2019;176(Suppl 1):S21-S141.

Auteurs

David Haefliger (D)

Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.

Catia Marzolini (C)

Division of Infectious Diseases and Hospital Epidemiology, Departments of Medicine and Clinical Research, University Hospital Basel, Basel, Switzerland.
Faculty of Medicine, University of Basel, Basel, Switzerland.
Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK.

Frederic Lamoth (F)

Service of Infectious Diseases, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.

Thomas Pabst (T)

Department of Medical Oncology, Inselspital, University Hospital, Bern, Switzerland.

Thierry Buclin (T)

Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.

Francoise Livio (F)

Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH