Probiotic characterization of Bacillus species strains isolated from an artisanal fermented milk product Dahi.


Journal

Folia microbiologica
ISSN: 1874-9356
Titre abrégé: Folia Microbiol (Praha)
Pays: United States
ID NLM: 0376757

Informations de publication

Date de publication:
Oct 2023
Historique:
received: 16 12 2022
accepted: 22 03 2023
medline: 1 11 2023
pubmed: 14 4 2023
entrez: 13 4 2023
Statut: ppublish

Résumé

Dahi, an artisanal fermented milk product, widely consumed in Pakistan, is microbiologically diverse, and many bacterial communities await investigation. The current study is first to present probiotic assessment of Bacillus species strains isolated from dahi. Based on 49 identified strains assessed, only 6 strains, i.e., Bacillus licheniformis QAUBL19, QAUBL1901, and QAUBL1902; Bacillus mycoides QAUBM19 and QAUBM1901; and Bacillus subtilis QAUBSS1 were having prominent persistence in the simulated gastrointestinal fluids, being non-hemolytic, with no DNase activity. Probiotic characteristics, cholesterol-assimilating, and carbohydrate-fermenting capabilities were assessed for all the strains. These six strains each showed variant cholesterol assimilating abilities. B. licheniformis QAUBL19 retaining most desired probiotic traits presented both notable cholesterol assimilating and bile salt hydrolase activities. It can be used as a probiotic of choice with hypocholesterolemia ability. B. subtilis QAUBSS1 showed wide carbohydrate fermentation ability and strongest antibacterial potential. It is likely to be considered a probiotic for living beings and starter culture for fermentation of food/feed.

Identifiants

pubmed: 37055653
doi: 10.1007/s12223-023-01048-w
pii: 10.1007/s12223-023-01048-w
doi:

Substances chimiques

Cholesterol 97C5T2UQ7J
Carbohydrates 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

757-769

Informations de copyright

© 2023. Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i.

Références

Albano C, Morandi S, Silvetti T, Casiraghi M, Manini F, Brasca M (2018) Lactic acid bacteria with cholesterol-lowering properties for dairy applications: in vitro and in situ activity. J Dairy Sci 101:10807–10818. https://doi.org/10.3168/jds.2018-15096
doi: 10.3168/jds.2018-15096 pubmed: 30243635
Álvarez-Cisneros YM, Ponce-Alquicira E (2018) Antibiotic resistance in lactic acid bacteria. In Antimicrobial Resistance-A Global Threat: IntechOpen
Antolovich M, Prenzler PD, Patsalides E, McDonald S, Robards KJA (2002) Methods for testing antioxidant activity. Analyst 127:183–198. https://doi.org/10.1039/B009171P
doi: 10.1039/B009171P pubmed: 11827390
Asadpoor M, Ithakisiou G-N, Henricks PA, Pieters R, Folkerts G, Braber S (2021) Non-digestible oligosaccharides and short chain fatty acids as therapeutic targets against enterotoxin-producing bacteria and their toxins. J Toxins 13:175. https://doi.org/10.3390/toxins13030175
doi: 10.3390/toxins13030175
Bover-Cid S, Holzapfel WH (1999) Improved screening procedure for biogenic amine production by lactic acid bacteria. Int J Food Microbiol 53:33–41. https://doi.org/10.1016/S0168-1605(99)00152-X
doi: 10.1016/S0168-1605(99)00152-X pubmed: 10598112
Caballero B, Finglas P, Toldrá F (2015) Encyclopedia of food and health: Academic Press
Cachaldora A, Fonseca S, Gomez M, Franco I, Carballo J (2014) Metabolic characterization of Bacillus subtilis and Bacillus amyloliquefaciens strains isolated from traditional dry-cured sausages. J Food Prot 77:1605–1611. https://doi.org/10.4315/0362-028X.JFP-14-145
doi: 10.4315/0362-028X.JFP-14-145 pubmed: 25198855
Chang C-J, Lin T-L, Tsai Y-L, Wu T-R, Lai W-F, Lu C-C, Lai H-C (2019) Next generation probiotics in disease amelioration. J Food Drug Anal 27:615–622. https://doi.org/10.1016/j.jfda.2018.12.011
doi: 10.1016/j.jfda.2018.12.011 pubmed: 31324278 pmcid: 9307044
Cho W-I, Chung M-S (2020) Bacillus spores: a review of their properties and inactivation processing technologies. Food Sci Biotechnol 29:1447–1461. https://doi.org/10.1007/s10068-020-00809-4
doi: 10.1007/s10068-020-00809-4 pubmed: 33041624 pmcid: 7538368
Choi A-R, Patra JK, Kim WJ, Kang S-S (2018) Antagonistic activities and probiotic potential of lactic acid bacteria derived from a plant-based fermented food. Front Microbiol 9:1963. https://doi.org/10.3389/fmicb.2018.01963
doi: 10.3389/fmicb.2018.01963 pubmed: 30197633 pmcid: 6117381
Cui Y, Wang S, Ding S, Shen J, Zhu K (2020) Toxins and mobile antimicrobial resistance genes in Bacillus probiotics constitute a potential risk for One Health. J Hazard Mater 382:121266. https://doi.org/10.1016/j.jhazmat.2019.121266
doi: 10.1016/j.jhazmat.2019.121266 pubmed: 31563808
de Almeida Júnior WL, da Silva Ferrari Í, de Souza JV, da Silva CD, da Costa MM, Dias FS (2015) Characterization and evaluation of lactic acid bacteria isolated from goat milk. Food Control 53:96–103. https://doi.org/10.1016/j.foodcont.2015.01.013
doi: 10.1016/j.foodcont.2015.01.013
Elmoslemany A, Keefe GP, Dohoo IR, Jayarao BJ (2009) Risk factors for bacteriological quality of bulk tank milk in Prince Edward Island dairy herds. Part 1: Overall risk factors. J Dairy Sci 92:2634–2643. https://doi.org/10.3168/jds.2008-1812
doi: 10.3168/jds.2008-1812 pubmed: 19447996
Elshaghabee FM, Rokana N, Gulhane RD, Sharma C, Panwar H (2017) Bacillus as potential probiotics: status, concerns, and future perspectives. Front Microbiol 1490. https://doi.org/10.3389/fmicb.2017.01490
EPo A, PoSuiA F (2012) Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J 10:2740. https://doi.org/10.2903/j.efsa.2012.2740
doi: 10.2903/j.efsa.2012.2740
Fernández-Pacheco P, Ramos Monge IM, Fernández-González M, Poveda Colado JM, Arévalo-Villena MJ (2021) Safety evaluation of yeasts with probiotic potential. Front Nutr 8:659328. https://doi.org/10.3389/fnut.2021.659328
Georgieva R, Yocheva L, Tserovska L, Zhelezova G, Stefanova N, Atanasova A, Danguleva A, Ivanova G, Karapetkov N, Rumyan N (2015) Antimicrobial activity and antibiotic susceptibility of Lactobacillus and Bifidobacterium spp. intended for use as starter and probiotic cultures. J Biotechnol Biotechnol Equip 29:84–91. https://doi.org/10.1080/13102818.2014.987450
doi: 10.1080/13102818.2014.987450
Giori GSD, Hébert EM (2001) Methods to determine proteolytic activity of lactic acid bacteria. In Food microbiology protocols (pp. 197–202): Springer
Halliwell B, Gutteridge JJ (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219:1. https://doi.org/10.1042/bj2190001
doi: 10.1042/bj2190001 pubmed: 6326753 pmcid: 1153442
Hamad SH (2012) Factors affecting the growth of microorganisms in food. Prog Food Preserv 405–427. https://doi.org/10.1002/9781119962045.ch20
Hankin L, Anagnostakis SL (1977) Solid media containing carboxymethylcellulose to detect C
doi: 10.1099/00221287-98-1-109
Hmani H, Daoud L, Suissi N, Mamdouh B (2021) In vitro assessment of the probiotic characteristics of Bacillus strains from gut of gilt-head bream, Sparus aurata. Sciforum. https://doi.org/10.3390/mol2net-07-09217
doi: 10.3390/mol2net-07-09217
Ho JCK, Yin Sze L (2018) Isolation, identification and characterization of enzyme-producing lactic acid bacteria from traditional fermented foods. Int J Stud Res 11. https://doi.org/10.1093/biohorizons/hzy004
Hu Y, Jin L, Zhao Y, Jiang L, Yao S, Zhou W, Lin K, Cui C (2021) Annual trends and health risks of antibiotics and antibiotic resistance genes in a drinking water source in East China. Sci Total Environ 791:148152
Javed A, Masud T, Imran M, Maqsood S (2011) Enterocins of Enterococcus faecium, emerging natural food preservatives. Ann Microbiol 61:699–708. https://doi.org/10.1007/s13213-011-0223-8
doi: 10.1007/s13213-011-0223-8
Jeon H-L, Lee N-K, Yang S-J, Kim W-S, Paik H-D (2017) Probiotic characterization of Bacillus subtilis P223 isolated from kimchi. Food Sci Biotechnol 26:1641–1648. https://doi.org/10.1007/s10068-017-0148-5
doi: 10.1007/s10068-017-0148-5 pubmed: 30263701 pmcid: 6049726
Kawarizadeh A, Tabatabaei M, Hosseinzadeh S, Farzaneh M, Pourmontaseri M (2019) The effects of probiotic Bacillus coagulans on the cytotoxicity and expression of alpha toxin gene of Clostridium perfringens type A. Anaerobe 59:61–67. https://doi.org/10.1016/j.anaerobe.2019.05.008
doi: 10.1016/j.anaerobe.2019.05.008 pubmed: 31125604
Khalesi P, Saman VP, Corneel TB, Tanya RP, Alex MT, Dawson P, Drew WP, Susan L (2021) Awareness and attitudes of gut health, probiotics and prebiotics in Australian adults. J Diet Suppl 18:418–432. https://doi.org/10.1080/19390211.2020.1783420
doi: 10.1080/19390211.2020.1783420
Kimelman H, Shemesh MJM (2019) Probiotic bifunctionality of Bacillus subtilis—rescuing lactic acid bacteria from desiccation and antagonizing pathogenic Staphylococcus aureus. Microorganisms 7:407. https://doi.org/10.3390/microorganisms7100407
doi: 10.3390/microorganisms7100407 pubmed: 31569575 pmcid: 6843919
Kuebutornye FK, Lu Y, Abarike ED, Wang Z, Li Y, Sakyi ME (2020) In vitro assessment of the probiotic characteristics of three bacillus species from the gut of nile tilapia, oreochromis niloticus. Probiotics Antimicrobs Portiens 12:412–424. https://doi.org/10.1007/s12602-019-09562-5
doi: 10.1007/s12602-019-09562-5
Lamba S, Mundanda Muthappa D, Fanning S, Scannell AG (2022) Sporulation and biofilms as survival mechanisms of Bacillus species in low-moisture food production environments. Foodborne Pathog Dis 19:448–462. https://doi.org/10.1089/fpd.2022.0006
doi: 10.1089/fpd.2022.0006 pubmed: 35819266
Larkin J, Stokes JJ (1966) Isolation of psychrophilic species of Bacillus. J Bacteriol 91:1667–1671. https://doi.org/10.1128/jb.91.5.1667-1671.1966
doi: 10.1128/jb.91.5.1667-1671.1966 pubmed: 5937228 pmcid: 316103
Lee H, Gilliland S, Carter SJ (2001) Amylolytic cultures of Lactobacillus acidophilus: potential probiotics to improve dietary starch utilization. J Food Sci 66:338–344. https://doi.org/10.1111/j.1365-2621.2001.tb11343.x
doi: 10.1111/j.1365-2621.2001.tb11343.x
Lee N-K, Kim W-S, Paik H-D (2019) Bacillus strains as human probiotics: characterization, safety, microbiome, and probiotic carrier. Food Sci Biotechnol 28:1297–1305. https://doi.org/10.1007/s10068-019-00691-9
doi: 10.1007/s10068-019-00691-9 pubmed: 31695928 pmcid: 6811671
Leuschner R, Kenneally P, Arendt EJ (1997) Method for the rapid quantitative detection of lipolytic activity among food fermenting microorganisms. Int J Food Microbiol 37:237–240. https://doi.org/10.1016/S0168-1605(97)00074-3
doi: 10.1016/S0168-1605(97)00074-3 pubmed: 9310861
Lin X, Xia Y, Wang G, Yang Y, Xiong Z, Lv F, Zhou W, Ai LJ (2018) Lactic acid bacteria with antioxidant activities alleviating oxidized oil induced hepatic injury in mice. Front Microbiol 9:2684. https://doi.org/10.3389/fmicb.2018.02684
doi: 10.3389/fmicb.2018.02684 pubmed: 30459744 pmcid: 6232458
Mackie A, Mulet-Cabero A-I, Torcello-Gómez A (2020) Simulating human digestion: developing our knowledge to create healthier and more sustainable foods. Food Funct 11:9397–9431. https://doi.org/10.1039/D0FO01981J
doi: 10.1039/D0FO01981J pubmed: 33107545
Madeeha IR, Ikram A, Imran M (2016) A preliminary insight of correlation between human fecal microbial diversity and blood lipid profile. Int J Food Sci Nutri 67:865–871. https://doi.org/10.1080/09637486.2016.1201791
doi: 10.1080/09637486.2016.1201791
Mahmood T, Masud T, Imran M, Ahmed I, Khalid N (2013) Selection and characterization of probiotic culture of Streptococcus thermophilus from dahi. Int J Food Sci Nutri 64:494–501. https://doi.org/10.3109/09637486.2012.749840
doi: 10.3109/09637486.2012.749840
Maqsood S, Hasan F, Masud T, Imran M (2008) Preliminary characterisation of bacteriocin produced by Lactobacillus acidophilus TS1 isolated from traditional dahi. Ann Microbiol 58:617–622. https://doi.org/10.1007/BF03175566
doi: 10.1007/BF03175566
Meng Y, Yao Z, Le HG, Lee SJ, Jeon HS, Yoo JY, Kim JH (2021) Characterization of a salt-resistant fibrinolytic protease of Bacillus licheniformis HJ4 isolated from Hwangseokae jeotgal, a traditional Korean fermented seafood. Folia Microbiol 66:787–795. https://doi.org/10.1007/s12223-021-00878-w
doi: 10.1007/s12223-021-00878-w
Mingmongkolchai S, Panbangred W (2017) In vitro evaluation of candidate Bacillus spp. for animal feed. J Gen Appl Microbiol 63:147–156. https://doi.org/10.2323/jgam.2016.09.002
doi: 10.2323/jgam.2016.09.002 pubmed: 28331163
Munna S, Tahera J, Afrad MH, Nur IT, Noor R (2015) Survival of Bacillus spp. SUBB01 at high temperatures and a preliminary assessment of its ability to protect heat-stressed Escherichia coli cells. BMC Res Notes 8:1–9. https://doi.org/10.1186/s13104-015-1631-9
doi: 10.1186/s13104-015-1631-9
Nawaz F, Khan MN, Javed A, Ahmed I, Ali N, Ali MI, Bakhtiar SM, Imran M (2019) Genomic and functional characterization of Enterococcus mundtii QAUEM2808, isolated from artisanal fermented milk product dahi. Front Microbiol 10:434. https://doi.org/10.3389/fmicb.2019.00434
doi: 10.3389/fmicb.2019.00434 pubmed: 30972030 pmcid: 6443856
Neale EK, Chapman GB (1970) Effect of low temperature on the growth and fine structure of Bacillus subtilis. J Bacteriol 104:518–528. https://doi.org/10.1128/jb.104.1.518-528.1970
doi: 10.1128/jb.104.1.518-528.1970 pubmed: 4990765 pmcid: 248238
Noor R, Munna MS, Tabassum N, Maniha SM, Tabassum T, Tabassum T (2019) Stress responses within Bacillus species under heat shock. Acta Sci Microbiol 2:148–153
Nwagu TN, Ugwuodo CJ, Onwosi CO, Inyima O, Uchendu OC, Akpuru C (2020) Evaluation of the probiotic attributes of Bacillus strains isolated from traditional fermented African locust bean seeds (Parkia biglobosa), “daddawa.” Ann Microbiol 70:1–15. https://doi.org/10.1186/s13213-020-01564-x
doi: 10.1186/s13213-020-01564-x
O’Shea EF, Cotter PD, Stanton C, Ross RP, Hill C (2012) Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: bacteriocins and conjugated linoleic acid. Int J Food Microbiol 152:189–205. https://doi.org/10.1016/j.ijfoodmicro.2011.05.025
doi: 10.1016/j.ijfoodmicro.2011.05.025 pubmed: 21742394
Ochoa-Solano JL, Olmos-Soto J (2006) The functional property of Bacillus for shrimp feeds. Food Microbiol 23:519–525. https://doi.org/10.1016/j.fm.2005.10.004
doi: 10.1016/j.fm.2005.10.004
Pisoschi AM, Pop A, Georgescu C, Turcuş V, Olah NK, Mathe E (2018) An overview of natural antimicrobials role in food. Euro J Med Chem 143:922–935. https://doi.org/10.1016/j.ejmech.2017.11.095
doi: 10.1016/j.ejmech.2017.11.095
Ranadheera CS, Vidanarachchi JK, Rocha RS, Cruz AG, Ajlouni S (2017) Probiotic delivery through fermentation: Dairy vs. non-dairy beverages. Fermentation 3:67. https://doi.org/10.3390/fermentation3040067
doi: 10.3390/fermentation3040067
Rashidi K, Razi B, Darand M, Dehghani A, Janmohammadi P, Alizadeh S (2021) Effect of probiotic fermented dairy products on incidence of respiratory tract infections: a systematic review and meta-analysis of randomized clinical trials. Nutri J 20:1–12. https://doi.org/10.1186/s12937-021-00718-0
doi: 10.1186/s12937-021-00718-0
Ren D, Zhu J, Gong S, Liu H, Yu H (2018) Antimicrobial characteristics of lactic acid bacteria isolated from homemade fermented foods. BioMed Res Int. https://doi.org/10.1155/2018/5416725
doi: 10.1155/2018/5416725 pubmed: 31205932 pmcid: 6330816
Ritter AC, Paula A, Correa F, Veras F, Brandelli A (2018) Characterization of Bacillus subtilis available as probiotics. J Microbiol Res 8:23–32
Rychen G, Aquilina G, Azimonti G, Bampidis V, Bastos MDL, Galobart J (2018) EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP), Guidance on the characterisation of microorganisms used as feed additives or as production organisms. EFSA J 16:e05206
pubmed: 32625840 pmcid: 7009341
Schroeter R, Hoffmann T, Voigt B, Meyer H, Bleisteiner M, Muntel J, Jürgen B, Albrecht D, Becher D, Lalk M (2013) Stress responses of the industrial workhorse Bacillus licheniformis to osmotic challenges. PloS One 8:1. https://doi.org/10.1371/journal.pone.0080956
doi: 10.1371/journal.pone.0080956
Shobharani P, Halami PM (2016) In vitro evaluation of the cholesterol-reducing ability of a potential probiotic Bacillus spp. Ann Microbiol 66:643–651. https://doi.org/10.1007/s13213-015-1146-6
doi: 10.1007/s13213-015-1146-6
Somashekaraiah R, Shruthi B, Deepthi B, Sreenivasa M (2019) Probiotic properties of lactic acid bacteria isolated from neera: a naturally fermenting coconut palm nectar. Front Microbiol 10:1382. https://doi.org/10.3389/fmicb.2019.01382
doi: 10.3389/fmicb.2019.01382 pubmed: 31316477 pmcid: 6611078
Soomro AH, Masud T (2007) Protein pattern and plasmid profile of lactic acid bacteria isolated from dahi, a traditional fermented milk product of Pakistan. Food Technol Biotechnol 45:447–453
Suci M, Arbianti R, Hermansyah H (2018) Lipase production from Bacillus subtilis with submerged fermentation using waste cooking oil. Pap Present IOP Conf Ser Earth Environ Sci. https://doi.org/10.1088/1755-1315/105/1/012126
doi: 10.1088/1755-1315/105/1/012126
Tamang JP, Shin D-H, Jung S-J, Chae S-W (2016) Functional properties of microorganisms in fermented foods. Front Microbiol 7:578. https://doi.org/10.3389/fmicb.2016.00578
doi: 10.3389/fmicb.2016.00578 pubmed: 27199913 pmcid: 4844621
Tanaka H, Doesburg K, Iwasaki T, Mierau I (1999) Screening of lactic acid bacteria for bile salt hydrolase activity. J Dairy Sci 82:2530–2535. https://doi.org/10.3168/jds.S0022-0302(99)75506-2
doi: 10.3168/jds.S0022-0302(99)75506-2 pubmed: 10629797
Teleky B-E, Martău GA, Vodnar DC (2020) Physicochemical effects of Lactobacillus plantarum and Lactobacillus casei cocultures on soy–wheat flour dough fermentation. Foods 9:1894. https://doi.org/10.3390/foods9121894
doi: 10.3390/foods9121894 pubmed: 33353037 pmcid: 7766497
Todorov SD, Ivanova IV, Popov I, Weeks R, Chikindas ML (2022) Bacillus spore-forming probiotics: benefits with concerns? Crit Rev Microbiol 48:513–530. https://doi.org/10.1080/1040841X.2021.1983517
doi: 10.1080/1040841X.2021.1983517 pubmed: 34620036
Torres S, Fabersani E, Marquez A, Gauffin-Cano P (2019) Adipose tissue inflammation and metabolic syndrome. The proactive role of probiotics. Eur J Nutri 58:27–43. https://doi.org/10.1007/s00394-018-1790-2
doi: 10.1007/s00394-018-1790-2
Urdaci MC, Bressollier P, Pinchuk I (2004) Bacillus clausii probiotic strains: antimicrobial and immunomodulatory activities. J Clin Gastroenterol 38:S86–S90. https://doi.org/10.1097/01.mcg.0000128925.06662.69
doi: 10.1097/01.mcg.0000128925.06662.69 pubmed: 15220667
Vallet-Gely I, Novikov A, Augusto L, Liehl P, Bolbach G, Péchy-Tarr M, Cosson P, Keel C, Caroff M, Lemaitre B (2010) Association of hemolytic activity of Pseudomonas entomophila, a versatile soil bacterium, with cyclic lipopeptide production. Appl Env Microbiol 76:910–921. https://doi.org/10.1128/AEM.02112-09
doi: 10.1128/AEM.02112-09
Verma JP, Jaiswal DK, Krishna R, Prakash S, Yadav J, Singh V (2018) Characterization and screening of thermophilic Bacillus strains for developing plant growth promoting consortium from hot spring of Leh and Ladakh region of India. Front Microbiol 9:1293. https://doi.org/10.3389/fmicb.2018.01293
doi: 10.3389/fmicb.2018.01293 pubmed: 29997578 pmcid: 6028593
Xu J-X, Li Z-Y, Lv X, Yan H, Zhou G-Y, Cao L-X, Yang Q, He Y-H (2020) Isolation and characterization of Bacillus subtilis strain 1-L-29, an endophytic bacteria from Camellia oleifera with antimicrobial activity and efficient plant-root colonization. PLoS One 15:e0232096. https://doi.org/10.1371/journal.pone.0232096
doi: 10.1371/journal.pone.0232096 pubmed: 32339210 pmcid: 7185607
Yan F, Polk DB (2020) Probiotics and probiotic-derived functional factors—mechanistic insights into applications for intestinal homeostasis. Front Immunol 11:1428. https://doi.org/10.3389/fimmu.2020.01428
doi: 10.3389/fimmu.2020.01428 pubmed: 32719681 pmcid: 7348054
Zhang Z, Lv J, Pan L, Zhang Y (2018) Roles and applications of probiotic Lactobacillus strains. Appl Microbiol Biotechnol 102:8135–8143. https://doi.org/10.1007/s00253-018-9217-9
doi: 10.1007/s00253-018-9217-9 pubmed: 30032432
Zoumpopoulou G, Tzouvanou A, Mavrogonatou E, Alexandraki V, Georgalaki M, Anastasiou R, Papadelli M, Manolopoulou E, Kazou M, Kletsas D (2018) Probiotic features of lactic acid bacteria isolated from a diverse pool of traditional Greek dairy products regarding specific strain-host interactions. Probiotics AntiMicrob Protiens 10:313–322. https://doi.org/10.1007/s12602-017-9311-9
doi: 10.1007/s12602-017-9311-9

Auteurs

Muhammad Nadeem Khan (MN)

Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.

Saeeda Bashir (S)

Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.

Muhammad Imran (M)

Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan. mmimran@qau.edu.pk.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH