Microbiota-derived tryptophan catabolites mediate the chemopreventive effects of statins on colorectal cancer.


Journal

Nature microbiology
ISSN: 2058-5276
Titre abrégé: Nat Microbiol
Pays: England
ID NLM: 101674869

Informations de publication

Date de publication:
05 2023
Historique:
received: 10 06 2022
accepted: 16 03 2023
medline: 8 5 2023
pubmed: 18 4 2023
entrez: 17 4 2023
Statut: ppublish

Résumé

Epidemiological studies have indicated an association between statin use and reduced incidence of colorectal cancer (CRC), and work in preclinical models has demonstrated a potential chemopreventive effect. Statins are also associated with reduced dysbiosis in the gut microbiome, yet the role of the gut microbiome in the protective effect of statins in CRC is unclear. Here we validated the chemopreventive role of statins by retrospectively analysing a cohort of patients who underwent colonoscopies. This was confirmed in preclinical models and patient cohorts, and we found that reduced tumour burden was partly due to statin modulation of the gut microbiota. Specifically, the gut commensal Lactobacillus reuteri was increased as a result of increased microbial tryptophan availability in the gut after atorvastatin treatment. Our in vivo studies further revealed that L. reuteri administration suppressed colorectal tumorigenesis via the tryptophan catabolite, indole-3-lactic acid (ILA). ILA exerted anti-tumorigenic effects by downregulating the IL-17 signalling pathway. This microbial metabolite inhibited T helper 17 cell differentiation by targeting the nuclear receptor, RAR-related orphan receptor γt (RORγt). Together, our study provides insights into an anti-cancer mechanism driven by statin use and suggests that interventions with L. reuteri or ILA could complement chemoprevention strategies for CRC.

Identifiants

pubmed: 37069401
doi: 10.1038/s41564-023-01363-5
pii: 10.1038/s41564-023-01363-5
doi:

Substances chimiques

Hydroxymethylglutaryl-CoA Reductase Inhibitors 0
Tryptophan 8DUH1N11BX

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

919-933

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Keum, N. & Giovannucci, E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat. Rev. Gastroenterol. Hepatol. 16, 713–732 (2019).
pubmed: 31455888 doi: 10.1038/s41575-019-0189-8
Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).
pubmed: 33538338 doi: 10.3322/caac.21660
Rothwell, P. M. et al. Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet 376, 1741–1750 (2010).
pubmed: 20970847 doi: 10.1016/S0140-6736(10)61543-7
Logan, R. F. et al. Aspirin and folic acid for the prevention of recurrent colorectal adenomas. Gastroenterology 134, 29–38 (2008).
pubmed: 18022173 doi: 10.1053/j.gastro.2007.10.014
Burn, J. et al. Cancer prevention with aspirin in hereditary colorectal cancer (Lynch syndrome), 10-year follow-up and registry-based 20-year data in the CAPP2 study: a double-blind, randomised, placebo-controlled trial. Lancet 395, 1855–1863 (2020).
pubmed: 32534647 pmcid: 7294238 doi: 10.1016/S0140-6736(20)30366-4
Drew, D. A., Cao, Y. & Chan, A. T. Aspirin and colorectal cancer: the promise of precision chemoprevention. Nat. Rev. Cancer 16, 173–186 (2016).
pubmed: 26868177 pmcid: 6741347 doi: 10.1038/nrc.2016.4
Poynter, J. N. et al. Statins and the risk of colorectal cancer. N. Engl. J. Med. 352, 2184–2192 (2005).
pubmed: 15917383 doi: 10.1056/NEJMoa043792
Cheung, K. S. et al. Statins reduce the progression of non-advanced adenomas to colorectal cancer: a postcolonoscopy study in 187,897 patients. Gut 68, 1979–1985 (2019).
pubmed: 30808646 doi: 10.1136/gutjnl-2018-317714
Ren, Q. W. et al. Statin associated lower cancer risk and related mortality in patients with heart failure. Eur. Heart J. 42, 3049–3059 (2021).
pubmed: 34157723 pmcid: 8380061 doi: 10.1093/eurheartj/ehab325
Chang, W. L. et al. Differential preventive activity of sulindac and atorvastatin in Apc(+/Min-FCCC) mice with or without colorectal adenomas. Gut 67, 1290–1298 (2018).
pubmed: 29122850 doi: 10.1136/gutjnl-2017-313942
Swamy, M. V. et al. Chemoprevention of familial adenomatous polyposis by low doses of atorvastatin and celecoxib given individually and in combination to APCMin mice. Cancer Res. 66, 7370–7377 (2006).
pubmed: 16849589 doi: 10.1158/0008-5472.CAN-05-4619
Reddy, B. S. et al. Prevention of azoxymethane-induced colon cancer by combination of low doses of atorvastatin, aspirin, and celecoxib in F 344 rats. Cancer Res. 66, 4542–4546 (2006).
pubmed: 16618783 doi: 10.1158/0008-5472.CAN-05-4428
Sun, L. et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat. Med. 24, 1919–1929 (2018).
pubmed: 30397356 pmcid: 6479226 doi: 10.1038/s41591-018-0222-4
Vieira-Silva, S. et al. Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature 581, 310–315 (2020).
pubmed: 32433607 doi: 10.1038/s41586-020-2269-x
Lavelle, A. & Sokol, H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 17, 223–237 (2020).
pubmed: 32076145 doi: 10.1038/s41575-019-0258-z
Zelante, T. et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39, 372–385 (2013).
pubmed: 23973224 doi: 10.1016/j.immuni.2013.08.003
Cervantes-Barragan, L. et al. Lactobacillus reuteri induces gut intraepithelial CD4
pubmed: 28775213 pmcid: 5687812 doi: 10.1126/science.aah5825
Henrick, B. M. et al. Bifidobacteria-mediated immune system imprinting early in life. Cell 184, 3884–3898.e11 (2021).
pubmed: 34143954 doi: 10.1016/j.cell.2021.05.030
Stockinger, B., Shah, K. & Wincent, E. AHR in the intestinal microenvironment: safeguarding barrier function. Nat. Rev. Gastroenterol. Hepatol. 18, 559–570 (2021).
pubmed: 33742166 pmcid: 7611426 doi: 10.1038/s41575-021-00430-8
The Top 300 of 2019, ClinCalc DrugStats Database Version 2021.10 (ClinCalc.com, 2021).
Zhao, R. et al. Aspirin reduces colorectal tumor development in mice and gut microbes reduce its bioavailability and chemopreventive effects. Gastroenterology 159, 969–983.e4 (2020).
pubmed: 32387495 doi: 10.1053/j.gastro.2020.05.004
Kadosh, E. et al. The gut microbiome switches mutant p53 from tumour-suppressive to oncogenic. Nature 586, 133–138 (2020).
pubmed: 32728212 pmcid: 7116712 doi: 10.1038/s41586-020-2541-0
Slowicka, K. et al. Zeb2 drives invasive and microbiota-dependent colon carcinoma. Nat. Cancer 1, 620–634 (2020).
pubmed: 35121975 doi: 10.1038/s43018-020-0070-2
Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).
pubmed: 21702898 pmcid: 3218848 doi: 10.1186/gb-2011-12-6-r60
Yu, Y. N. et al. Berberine may rescue Fusobacterium nucleatum-induced colorectal tumorigenesis by modulating the tumor microenvironment. Oncotarget 6, 32013–32026 (2015).
pubmed: 26397137 pmcid: 4741656 doi: 10.18632/oncotarget.5166
Lamas, B. et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat. Med. 22, 598–605 (2016).
pubmed: 27158904 pmcid: 5087285 doi: 10.1038/nm.4102
Agus, A., Planchais, J. & Sokol, H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 23, 716–724 (2018).
pubmed: 29902437 doi: 10.1016/j.chom.2018.05.003
Wilck, N. et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature 551, 585–589 (2017).
pubmed: 29143823 pmcid: 6070150 doi: 10.1038/nature24628
Chae, W. J. et al. Ablation of IL-17A abrogates progression of spontaneous intestinal tumorigenesis. Proc. Natl Acad. Sci. USA 107, 5540–5544 (2010).
Grivennikov, S. I. et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491, 254–258 (2012).
pubmed: 23034650 pmcid: 3601659 doi: 10.1038/nature11465
Yang, J. Y. et al. Intestinal epithelial TBK1 prevents differentiation of T-helper 17 cells and tumorigenesis in mice. Gastroenterology 159, 1793–1806 (2020).
pubmed: 32745468 doi: 10.1053/j.gastro.2020.07.047
Xiao, S. et al. Small-molecule RORgammat antagonists inhibit T helper 17 cell transcriptional network by divergent mechanisms. Immunity 40, 477–489 (2014).
pubmed: 24745332 pmcid: 4066874 doi: 10.1016/j.immuni.2014.04.004
Jerabek-Willemsen, M., Wienken, C. J., Braun, D., Baaske, P. & Duhr, S. Molecular interaction studies using microscale thermophoresis. Assay Drug Dev. Technol. 9, 342–353 (2011).
pubmed: 21812660 pmcid: 3148787 doi: 10.1089/adt.2011.0380
Kumar, N. et al. Identification of SR2211: a potent synthetic RORgamma-selective modulator. ACS Chem. Biol. 7, 672–677 (2012).
pubmed: 22292739 pmcid: 3331898 doi: 10.1021/cb200496y
Veldhoen, M. et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453, 106–109 (2008).
pubmed: 18362914 doi: 10.1038/nature06881
Metidji, A. et al. The environmental sensor AHR protects from inflammatory damage by maintaining intestinal stem cell homeostasis and barrier integrity. Immunity 49, 353–362.e5 (2018).
pubmed: 30119997 pmcid: 6104739 doi: 10.1016/j.immuni.2018.07.010
Ricciardiello, L., Ahnen, D. J. & Lynch, P. M. Chemoprevention of hereditary colon cancers: time for new strategies. Nat. Rev. Gastroenterol. Hepatol. 13, 352–361 (2016).
pubmed: 27095653 doi: 10.1038/nrgastro.2016.56
Katona, B. W. & Weiss, J. M. Chemoprevention of colorectal cancer. Gastroenterology 158, 368–388 (2020).
pubmed: 31563626 doi: 10.1053/j.gastro.2019.06.047
Grady, W. M. & Markowitz, S. D. The molecular pathogenesis of colorectal cancer and its potential application to colorectal cancer screening. Dig. Dis. Sci. 60, 762–772 (2015).
pubmed: 25492499 doi: 10.1007/s10620-014-3444-4
Gohlke, B. O. et al. Real-world evidence for preventive effects of statins on cancer incidence: a trans-Atlantic analysis. Clin. Transl. Med 12, e726 (2022).
pubmed: 35184411 pmcid: 8858616 doi: 10.1002/ctm2.726
Ananthakrishnan, A. N. et al. Statin use is associated with reduced risk of colorectal cancer in patients with inflammatory bowel diseases. Clin. Gastroenterol. Hepatol. 14, 973–979 (2016).
pubmed: 26905907 pmcid: 4912917 doi: 10.1016/j.cgh.2016.02.017
Bardou, M., Barkun, A. & Martel, M. Effect of statin therapy on colorectal cancer. Gut 59, 1572–1585 (2010).
pubmed: 20660702 doi: 10.1136/gut.2009.190900
Daillere, R. et al. Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity 45, 931–943 (2016).
pubmed: 27717798 doi: 10.1016/j.immuni.2016.09.009
Yoo, W. et al. High-fat diet-induced colonocyte dysfunction escalates microbiota-derived trimethylamine N-oxide. Science 373, 813–818 (2021).
pubmed: 34385401 pmcid: 8506909 doi: 10.1126/science.aba3683
Mu, Q., Tavella, V. J. & Luo, X. M. Role of Lactobacillus reuteri in human health and diseases. Front. Microbiol. 9, 757 (2018).
pubmed: 29725324 pmcid: 5917019 doi: 10.3389/fmicb.2018.00757
Sung, V. et al. Treating infant colic with the probiotic Lactobacillus reuteri: double blind, placebo controlled randomised trial. Brit. Med. J. 348, g2107 (2014).
pubmed: 24690625 pmcid: 3972414 doi: 10.1136/bmj.g2107
Oliva, S. et al. Randomised clinical trial: the effectiveness of Lactobacillus reuteri ATCC 55730 rectal enema in children with active distal ulcerative colitis. Aliment. Pharm. Ther. 35, 327–334 (2012).
doi: 10.1111/j.1365-2036.2011.04939.x
Dinleyici, E. C., Group, P. S. & Vandenplas, Y. Lactobacillus reuteri DSM 17938 effectively reduces the duration of acute diarrhoea in hospitalised children. Acta Paediatr. 103, e300–e305 (2014).
pubmed: 24579935
Bell, H. N. et al. Reuterin in the healthy gut microbiome suppresses colorectal cancer growth through altering redox balance. Cancer Cell 40, 185–200.e6 (2022).
pubmed: 34951957 doi: 10.1016/j.ccell.2021.12.001
Sugimura, N. et al. Lactobacillus gallinarum modulates the gut microbiota and produces anti-cancer metabolites to protect against colorectal tumourigenesis. Gut https://doi.org/10.1136/gutjnl-2020-323951 (2021).
doi: 10.1136/gutjnl-2020-323951 pubmed: 34937766
Hezaveh, K. et al. Tryptophan-derived microbial metabolites activate the aryl hydrocarbon receptor in tumor-associated macrophages to suppress anti-tumor immunity. Immunity 55, 324–340.e8 (2022).
pubmed: 35139353 pmcid: 8888129 doi: 10.1016/j.immuni.2022.01.006
Kathania, M. et al. Itch inhibits IL-17-mediated colon inflammation and tumorigenesis by ROR-γt ubiquitination. Nat. Immunol. 17, 997–1004 (2016).
pubmed: 27322655 doi: 10.1038/ni.3488
Hurtado, C. G., Wan, F., Housseau, F. & Sears, C. L. Roles for interleukin 17 and adaptive immunity in pathogenesis of colorectal cancer. Gastroenterology 155, 1706–1715 (2018).
pubmed: 30218667 doi: 10.1053/j.gastro.2018.08.056
Wu, S. et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat. Med. 15, 1016–1022 (2009).
pubmed: 19701202 pmcid: 3034219 doi: 10.1038/nm.2015
Brennan, C. A. et al. Fusobacterium nucleatum drives a pro-inflammatory intestinal microenvironment through metabolite receptor-dependent modulation of IL-17 expression. Gut Microbes 13, 1987780 (2021).
pubmed: 34781821 pmcid: 8604392 doi: 10.1080/19490976.2021.1987780
Ternes, D. et al. The gut microbial metabolite formate exacerbates colorectal cancer progression. Nat. Metab. 4, 458–475 (2022).
pubmed: 35437333 pmcid: 9046088 doi: 10.1038/s42255-022-00558-0
Wyatt, M. & Greathouse, K. L. Targeting dietary and microbial tryptophan-indole metabolism as therapeutic approaches to colon cancer. Nutrients https://doi.org/10.3390/nu13041189 (2021).
Murray, I. A., Patterson, A. D. & Perdew, G. H. Aryl hydrocarbon receptor ligands in cancer: friend and foe. Nat. Rev. Cancer 14, 801–814 (2014).
pubmed: 25568920 pmcid: 4401080 doi: 10.1038/nrc3846
Gronke, K. et al. Interleukin-22 protects intestinal stem cells against genotoxic stress. Nature 566, 249–253 (2019).
pubmed: 30700914 pmcid: 6420091 doi: 10.1038/s41586-019-0899-7
Shah, K. et al. Cell-intrinsic aryl hydrocarbon receptor signalling is required for the resolution of injury-induced colonic stem cells. Nat. Commun. 13, 1827 (2022).
pubmed: 35383166 pmcid: 8983642 doi: 10.1038/s41467-022-29098-7
Kawajiri, K. et al. Aryl hydrocarbon receptor suppresses intestinal carcinogenesis in ApcMin/+ mice with natural ligands. Proc. Natl Acad. Sci. USA 106, 13481–13486 (2009).
Sekine, H. et al. Hypersensitivity of aryl hydrocarbon receptor-deficient mice to lipopolysaccharide-induced septic shock. Mol. Cell. Biol. 29, 6391–6400 (2009).
pubmed: 19822660 pmcid: 2786870 doi: 10.1128/MCB.00337-09
Diaz-Diaz, C. J. et al. The aryl hydrocarbon receptor is a repressor of inflammation-associated colorectal tumorigenesis in mouse. Ann. Surg. 264, 429–436 (2016).
pubmed: 27433903 doi: 10.1097/SLA.0000000000001874
Coogan, P. F., Smith, J. & Rosenberg, L. Statin use and risk of colorectal cancer. J. Natl Cancer Inst. 99, 32–40 (2007).
pubmed: 17202111 doi: 10.1093/jnci/djk003
Siddiqui, A. A. et al. The long-term use of statins is associated with a decreased incidence of adenomatous colon polyps. Digestion 79, 17–22 (2009).
pubmed: 19246916 doi: 10.1159/000203636
Tanoue, T. et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature 565, 600–605 (2019).
pubmed: 30675064 doi: 10.1038/s41586-019-0878-z
Burberry, A. et al. C9orf72 suppresses systemic and neural inflammation induced by gut bacteria. Nature 582, 89–94 (2020).
pubmed: 32483373 pmcid: 7416879 doi: 10.1038/s41586-020-2288-7
Secombe, K. R. et al. Guidelines for reporting on animal fecal transplantation (GRAFT) studies: recommendations from a systematic review of murine transplantation protocols. Gut Microbes 13, 1979878 (2021).
pubmed: 34586011 pmcid: 8489962 doi: 10.1080/19490976.2021.1979878
Gheorghe, C. E. et al. Investigating causality with fecal microbiota transplantation in rodents: applications, recommendations and pitfalls. Gut Microbes 13, 1941711 (2021).
pubmed: 34328058 pmcid: 8331043 doi: 10.1080/19490976.2021.1941711
Sapi, J. et al. Tumor volume estimation and quasi-continuous administration for most effective bevacizumab therapy. PLoS ONE 10, e0142190 (2015).
pubmed: 26540189 pmcid: 4635016 doi: 10.1371/journal.pone.0142190
Fujii, M., Matano, M., Nanki, K. & Sato, T. Efficient genetic engineering of human intestinal organoids using electroporation. Nat. Protoc. 10, 1474–1485 (2015).
pubmed: 26334867 doi: 10.1038/nprot.2015.088
Nielsen, H. V. et al. The metal ion-dependent adhesion site motif of the Enterococcus faecalis EbpA pilin mediates pilus function in catheter-associated urinary tract infection. mBio 3, e00177-00112 (2012).
pubmed: 22829678 pmcid: 3419518 doi: 10.1128/mBio.00177-12
Dodd, D. et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature 551, 648–652 (2017).
pubmed: 29168502 pmcid: 5850949 doi: 10.1038/nature24661
Rijnen, L., Bonneau, S. & Yvon, M. Genetic characterization of the major lactococcal aromatic aminotransferase and its involvement in conversion of amino acids to aroma compounds. Appl. Environ. Microbiol. 65, 4873–4880 (1999).
pubmed: 10543798 pmcid: 91656 doi: 10.1128/AEM.65.11.4873-4880.1999
Weigmann, B. et al. Isolation and subsequent analysis of murine lamina propria mononuclear cells from colonic tissue. Nat. Protoc. 2, 2307–2311 (2007).
pubmed: 17947970 doi: 10.1038/nprot.2007.315
Leonardi, I. et al. CX3CR1
pubmed: 29326275 pmcid: 5805464 doi: 10.1126/science.aao1503
Huh, J. R. et al. Digoxin and its derivatives suppress TH17 cell differentiation by antagonizing RORγt activity. Nature 472, 486–490 (2011).
pubmed: 21441909 pmcid: 3172133 doi: 10.1038/nature09978
Hang, S. et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature 576, 143–148 (2019).
pubmed: 31776512 pmcid: 6949019 doi: 10.1038/s41586-019-1785-z
Han, J. X. et al. ZFP90 drives the initiation of colitis-associated colorectal cancer via a microbiota-dependent strategy. Gut Microbes 13, 1–20 (2021).
pubmed: 34125646 doi: 10.1080/19490976.2021.1917269
Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).
pubmed: 19289445 pmcid: 2672628 doi: 10.1093/bioinformatics/btp120
Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).
pubmed: 22383036 pmcid: 3334321 doi: 10.1038/nprot.2012.016
Huang da, W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).
pubmed: 19033363 doi: 10.1093/nar/gkn923
Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).
pubmed: 19131956 doi: 10.1038/nprot.2008.211

Auteurs

Ji-Xuan Han (JX)

Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

Zhi-Hang Tao (ZH)

Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

Ji-Lin Wang (JL)

Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

Lu Zhang (L)

Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

Chen-Yang Yu (CY)

Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

Zi-Ran Kang (ZR)

Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

Yuanhong Xie (Y)

Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

Jialu Li (J)

Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

Shiyuan Lu (S)

Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

Yun Cui (Y)

Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

Jia Xu (J)

Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

Enhao Zhao (E)

Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

Ming Wang (M)

Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

Jinxian Chen (J)

Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

Zheng Wang (Z)

Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

Qiang Liu (Q)

Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

Hui-Min Chen (HM)

Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

Wenyu Su (W)

Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

Tian-Hui Zou (TH)

Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

Cheng-Bei Zhou (CB)

Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

Jie Hong (J)

Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

Haoyan Chen (H)

Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

Hua Xiong (H)

Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. xionghua@renji.com.

Ying-Xuan Chen (YX)

Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. yingxuanchen71@sjtu.edu.cn.

Jing-Yuan Fang (JY)

Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes; Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. jingyuanfang@sjtu.edu.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH