The genetic approach to stillbirth: A »systematic review«.


Journal

Prenatal diagnosis
ISSN: 1097-0223
Titre abrégé: Prenat Diagn
Pays: England
ID NLM: 8106540

Informations de publication

Date de publication:
08 2023
Historique:
revised: 27 03 2023
received: 28 12 2022
accepted: 09 04 2023
medline: 15 8 2023
pubmed: 19 4 2023
entrez: 19 04 2023
Statut: ppublish

Résumé

Unexplained stillbirth is defined as a stillbirth with no known cause after the exclusion of common causes, including obstetric complications, infections, placental insufficiency or abruption, umbilical cord complications, and congenital abnormalities with or without known genetic cause. More than 60% of stillbirth cases remain unexplained. The aim of this systematic review was to investigate the known genetic causes of unexplained stillbirth cases and to evaluate the current position and future directions for the use of genetic and genomic testing in expanding the knowledge in this field. A systematic search through several databases was performed using the keywords genetics and stillbirths in humans. Different methods to detect various types of causal genetic aberrations have been used in the past decades, from standard karyotyping to novel methods such as chromosomal microarray analysis and next generation sequencing technologies. Apart from common chromosomal aneuploidies, a promising hypothesis about genetic causes included genes related to cardiomyopathies and channelopathies. However, these were tested in the research settings, since molecular karyotyping is currently the standard approach in the routine evaluation of genetic causes of stillbirth. Hereby, we provide evidence that expanding knowledge using novel genetic and genomic testing might uncover new genetic causes of unexplained stillbirth.

Identifiants

pubmed: 37072878
doi: 10.1002/pd.6354
doi:

Types de publication

Systematic Review Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

1220-1228

Informations de copyright

© 2023 The Authors. Prenatal Diagnosis published by John Wiley & Sons Ltd.

Références

Wapner RJ, Lewis D. Genetics and metabolic causes of stillbirth. Semin Perinatol. 2002;26(1):70-74. https://doi.org/10.1053/sper.2002.29853
Stillbirth Collaborative Research Network Writing Group. Causes of death among stillbirths. JAMA. 2011;306(22):2459-2468.
Reddy UM, Page GP, Saade GR, et al. Karyotype versus microarray testing for genetic abnormalities after stillbirth. N Engl J Med. 2012;367(23):2185-2193. https://doi.org/10.1056/nejmoa1201569
Smith GCS, Fretts RC. Stillbirth Lancet. 2007;370(9600):1715-1725. https://doi.org/10.1016/s0140-6736(07)61723-1
Flenady V, Wojcieszek AM, Middleton P, et al. Ending preventable stillbirths 4: stillbirths: Recall to action in high-income countries. Lancet. 2016;387(1009):691-702. https://doi.org/10.1016/s0140-6736(15)01020-x
Lawn JE, Blencowe H, Waiswa P, et al. Stillbirths: rates, risk factors, and acceleration towards 2030. Lancet. 2016;387(10018):587-603. https://doi.org/10.1016/s0140-6736(15)00837-5
Pilliod RA, Cheng YW, Snowden JM, Doss AE, Caughey AB. The risk of intrauterine fetal death in the small-for-gestational-age fetus. Am J Obstet Gynecol. 2012;207(4):318.e1-318.e6. https://doi.org/10.1016/j.ajog.2012.06.039
Page JM, Christiansen-Lindquist L, Thorsten V, et al. Diagnostic tests for evaluation of stillbirth: results from the stillbirth collaborative research network. Obstet Gynecol. 2017;129(4):699-706. https://doi.org/10.1097/aog.0000000000001937
Silver RM, Varner MW, Reddy U, et al. Work-up of stillbirth: a review of the evidence. Am J Obstet Gynecol. 2007;196(5):433-444. https://doi.org/10.1016/j.ajog.2006.11.041
Bauld R, Sutherland GR, Bain AD. Chromosome studies in investigation of stillbirths and neonatal deaths. Arch Dis Child. 1974;49(10):782-788. https://doi.org/10.1136/adc.49.10.782
Sahlin E, Gustavsson P, Liedén A, et al. Molecular and cytogenetic analysis in stillbirth: results from 481 consecutive cases. Fetal Diagn Ther. 2014;36(4):326-332. https://doi.org/10.1159/000361017
Committee on Genetics and the Society for Maternal-Fetal Medicine. Committee Opinion No.682: microarrays and next-generation sequencing technology: the Use of advanced genetic diagnostic tools in obstetrics and gynecology. Obstet Gynecol. 2016;128(6):e262−8.
Wapner RJ, Martin CL, Levy B, et al. Chromosomal microarray versus karyotyping for prenatal diagnosis. N Engl J Med. 2012;367(23):2175-2184. https://doi.org/10.1056/nejmoa1203382
Raca G, Artzer A, Thorson L, et al. Array-based comparative genomic hybridization (aCGH) in the genetic evaluation of stillbirth. Am J Med Genet. 2009;149(11):2437-2443. https://doi.org/10.1002/ajmg.a.33083
Harris RA, Ferrari F, Ben-Shachar S, et al. Genome-wide array-based copy number profiling in human placentas from unexplained stillbirths: copy number profiling in unexplained stillbirths. Prenat Diagn. 2011;31(10):932-944. https://doi.org/10.1002/pd.2817
Crotti L, Tester DJ, White WM, et al. Long QT syndrome-associated mutations in intrauterine fetal death. JAMA, J Am Med Assoc. 2013;309(14):1473-1482. https://doi.org/10.1001/jama.2013.3219
Sahlin E, Gréen A, Gustavsson P, et al. Identification of putative pathogenic single nucleotide variants (SNVs) in genes associated with heart disease in 290 cases of stillbirth. PLoS One. 2019;14(1):e0210017. https://doi.org/10.1371/journal.pone.0210017
Arnestad M, Crotti L, Rognum TO, et al. Prevalence of long-QT syndrome gene variants in sudden infant death syndrome. Circulation. 2007;115(3):361-367. https://doi.org/10.1161/circulationaha.106.658021
Wilkins-Haug L. Genetic innovations and our understanding of stillbirth. Hum Genet. 2020;139(9):1161-1172. https://doi.org/10.1007/s00439-020-02146-2
Hays t, Wapner JR. Genetic testing for unexplained perinatal disorders. Curr Opin Pediatr. 2021;33(2):195-202. https://doi.org/10.1097/mop.0000000000000999
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. https://doi.org/10.1371/journal.pmed,1000097
Ernst LM, Rand CM, Bao R, et al. Stillbirth: genome-wide copy number variation profiling in archived placental umbilical cord samples with pathologic and clinical correlation. Placenta. 2015;36(8):783-789. https://doi.org/10.1016/j.placenta.2015.04.010
Stanley KE, Giordano J, Thorsten V, et al. Causal genetic variants in stillbirth. N Engl J Med. 2020;383(12):1107-1116. https://doi.org/10.1056/nejmoa1908753
Munroe PB, Addison S, Abrams DJ, et al. Postmortem genetic testing for cardiac ion channelopathies in stillbirths. Circ Genomic Precis Med. 2018;11(1):e001817. https://doi.org/10.1161/circgen.117.001817
Muin DA, Kollmann M, Blatterer J, et al. Cardio pathogenic variants in unexplained intrauterine fetal death: a retrospective pilot study. Sci Rep. 2021;11(1):6737.
Amar HSS, Maimunah AH, Wong SL. Use of Wigglesworth pathophysiological classification for perinatal mortality in Malaysia. Arch Dis Child. 1996;74(1):56-59. https://doi.org/10.1136/fn.74.1.f56
Christodoulou J, Wilcken B. Perimortem laboratory investigation of genetic metabolic disorders. Semin Neonatol. 2004;9(4):275-280. https://doi.org/10.1016/j.siny.2003.10.004
Riggs ER, Andersen EF, Cherry AM, et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020;22(2):245-257. https://doi.org/10.1038/s41436-019-0686-8
Page JM, Silver RM. Stillbirth: evaluation and follow-up. Obs Gynecol Clin North Am. 2020;47(3):439-451. https://doi.org/10.1016/j.ogc.2020.04.008
Gray KJ, Wilkins-Haug LE, Herrig NJ, Vora NL. Fetal phenotypes emerge as genetic technologies become robust. Prenat Diagn. 2019;39(9):811-817. https://doi.org/10.1002/pd.5532
Martinez-Portilla RJ, Pauta M, Hawkins-Villarreal A, et al. Added value of chromosomal microarray analysis over conventional karyotyping in stillbirth work-up: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2019;53(5):590-597. https://doi.org/10.1097/01.ogx.0000585312.51565.57
Schwartz PJ, Stramba-Badiale M, Crotti L, et al. Prevalence of the congenital long QT syndrome. Circulation. 2009;120(18):1761-1767. https://doi.org/10.1161/circulationaha.109.863209
Ishikawa S, Yamada T, Kuwata T, et al. Fetal presentation of long QT syndrome - evaluation of prenatal risk factors: a systematic review. Fetal Diagn Ther. 2013;33(1):1-7. https://doi.org/10.1159/000339150
Baruteau AE, Tester DJ, Kapplinger JD, Ackerman MJ, Behr ER. Sudden infant death syndrome and inherited cardiac conditions. Nat Rev Cardiol. 2017;14(12):715-726. https://doi.org/10.1038/nrcardio.2017.129
Cuneo BF, Kaizer AM, Clur SA, et al. Mothers with long QT syndrome are at increased risk for fetal death: findings from a multicenter international study. Am J Obstet Gynecol. 2020;222(3):263.e1-263.e11. https://doi.org/10.1016/j.ajog.2019.09.004
Lee H, Deignan JL, Dorrani N, et al. Clinical exome sequencing for genetic identification of rare mendelian disorders. JAMA, J Am Med Assoc. 2014;312(18):1880-1887. https://doi.org/10.1001/jama.2014.14604
Gabriel H, Korinth D, Ritthaler M, et al. Trio exome sequencing is highly relevant in prenatal diagnostics. Prenat Diagn. 2022;42(7):845-851. https://doi.org/10.1002/pd.6081

Auteurs

Maja Dolanc Merc (M)

Department of Perinatology, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, Ljubljana, Slovenia.

Borut Peterlin (B)

Clinical Institute for Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia.
Medical Faculty, University of Ljubljana, Ljubljana, Slovenia.

Luca Lovrecic (L)

Clinical Institute for Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia.
Medical Faculty, University of Ljubljana, Ljubljana, Slovenia.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH