Integrated Use of In Vitro and In Vivo Information for Comprehensive Prediction of Drug Interactions Due to Inhibition of Multiple CYP Isoenzymes.
Journal
Clinical pharmacokinetics
ISSN: 1179-1926
Titre abrégé: Clin Pharmacokinet
Pays: Switzerland
ID NLM: 7606849
Informations de publication
Date de publication:
Jun 2023
Jun 2023
Historique:
accepted:
28
02
2023
medline:
12
6
2023
pubmed:
20
4
2023
entrez:
19
04
2023
Statut:
ppublish
Résumé
Mechanistic static pharmacokinetic (MSPK) models are simple, have fewer data requirements, and have broader applicability; however, they cannot use in vitro information and cannot distinguish the contributions of multiple cytochrome P450 (CYP) isoenzymes and the hepatic and intestinal first-pass effects appropriately. We aimed to establish a new MSPK analysis framework for the comprehensive prediction of drug interactions (DIs) to overcome these disadvantages. Drug interactions that occurred by inhibiting CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A in the liver and CYP3A in the intestine were simultaneously analyzed for 59 substrates and 35 inhibitors. As in vivo information, the observed changes in the area under the concentration-time curve (AUC) and elimination half-life (t Using in vivo information from 239 combinations and in vitro 172 fm and 344 Ki values, changes in AUC, and t This framework would be a powerful tool for the reasonable management of various DIs based on all available in vitro and in vivo information.
Sections du résumé
BACKGROUND
BACKGROUND
Mechanistic static pharmacokinetic (MSPK) models are simple, have fewer data requirements, and have broader applicability; however, they cannot use in vitro information and cannot distinguish the contributions of multiple cytochrome P450 (CYP) isoenzymes and the hepatic and intestinal first-pass effects appropriately. We aimed to establish a new MSPK analysis framework for the comprehensive prediction of drug interactions (DIs) to overcome these disadvantages.
METHODS
METHODS
Drug interactions that occurred by inhibiting CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A in the liver and CYP3A in the intestine were simultaneously analyzed for 59 substrates and 35 inhibitors. As in vivo information, the observed changes in the area under the concentration-time curve (AUC) and elimination half-life (t
RESULT
RESULTS
Using in vivo information from 239 combinations and in vitro 172 fm and 344 Ki values, changes in AUC, and t
CONCLUSION
CONCLUSIONS
This framework would be a powerful tool for the reasonable management of various DIs based on all available in vitro and in vivo information.
Identifiants
pubmed: 37076696
doi: 10.1007/s40262-023-01234-6
pii: 10.1007/s40262-023-01234-6
doi:
Substances chimiques
Cytochrome P-450 CYP3A
EC 1.14.14.1
Isoenzymes
0
Cytochrome P-450 Enzyme System
9035-51-2
Cytochrome P-450 CYP2D6
EC 1.14.14.1
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
849-860Subventions
Organisme : Japan Agency for Medical Research and Development
ID : JP18be0304203
Organisme : Japan Agency for Medical Research and Development
ID : JP19be0304203
Organisme : Japan Agency for Medical Research and Development
ID : JP20be0304203
Organisme : Japan Agency for Medical Research and Development
ID : JP21be0304203
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Références
https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-table-substrates-inhibitors-and-inducers
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/clinical-drug-interaction-studies-cytochrome-p450-enzyme-and-transporter-mediated-drug-interactions
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/vitro-drug-interaction-studies-cytochrome-p450-enzyme-and-transporter-mediated-drug-interactions
https://www.ema.europa.eu/en/investigation-drug-interactions#current-effective-version---under-revision-section
Guideline on drug interaction for drug development and appropriate provision of information. https://www.pmda.go.jp/files/000228122.pdf
Sugano K. Lost in modelling and simulation? ADMET DMPK. 2021;9(2):75–109.
pubmed: 35299768
pmcid: 8920108
doi: 10.5599/admet.923
Min JS, Bae SK. Prediction of drug-drug interaction potential using physiologically based pharmacokinetic modeling. Arch Pharm Res. 2017;40(12):1356–79.
pubmed: 29079968
doi: 10.1007/s12272-017-0976-0
Li R, Barton HA, Yates PD, Ghosh A, Wolford AC, Riccardi KA, Maurer TS. A “middle-out” approach to human pharmacokinetic predictions for OATP substrates using physiologically-based pharmacokinetic modeling. J Pharmacokinet Pharmacodyn. 2014;41(3):197–209.
pubmed: 24718648
doi: 10.1007/s10928-014-9357-1
Tsamandouras N, Rostami-Hodjegan A, Aarons L. Combining the “bottom up” and “top down” approaches in pharmacokinetic modelling: fitting PBPK models to observed clinical data. Br J Clin Pharmacol. 2015;79(1):48–55.
pubmed: 24033787
doi: 10.1111/bcp.12234
Yoshida K, Guo C, Sane R. Quantitative prediction of OATP-mediated drug–drug interactions with model-based analysis of endogenous biomarker kinetics. CPT Pharmacomet Syst Pharmacol. 2018;7(8):517–24.
doi: 10.1002/psp4.12315
Yoshikado T, Toshimoto K, Maeda K, Kusuhara H, Kimoto E, Rodrigues AD, Chiba K, Sugiyama Y. PBPK modeling of coproporphyrin I as an endogenous biomarker for drug interactions involving inhibition of hepatic OATP1B1 and OATP1B3. CPT Pharmacomet Syst Pharmacol. 2018;7(11):739–47.
doi: 10.1002/psp4.12348
Yoshida K, Maeda K, Konagaya A, Kusuhara H. Accurate estimation of in vivo inhibition constants of inhibitors and fraction metabolized of substrates with physiologically based pharmacokinetic drug–drug interaction models incorporating parent drugs and metabolites of substrates with cluster newton method. Drug Metab Dispos. 2018;46(11):1805–16.
pubmed: 30135241
doi: 10.1124/dmd.118.081828
Schlender JF, Teutonico D, Coboeken K, Schnizler K, Eissing T, Willmann S, Jaehde U, Stass H. A physiologically-based pharmacokinetic model to describe ciprofloxacin pharmacokinetics over the entire span of life. Clin Pharmacokinet. 2018;57(12):1613–34.
pubmed: 29737457
pmcid: 6267540
doi: 10.1007/s40262-018-0661-6
Ke AB, Rostami-Hodjegan A, Zhao P, Unadkat JD. Pharmacometrics in pregnancy: an unmet need. Annu Rev Pharmacol Toxicol. 2014;54:53–69.
pubmed: 24392692
doi: 10.1146/annurev-pharmtox-011613-140009
Feng S, Shi J, Parrott N, Hu P, Weber C, Martin-Facklam M, Saito T, Peck R. Combining “bottom-up” and “top-down” methods to assess ethnic difference in clearance: bitopertin as an example. Clin Pharmacokinet. 2016;55(7):823–32.
pubmed: 26715215
doi: 10.1007/s40262-015-0356-1
Doki K, Neuhoff S, Rostami-Hodjegan A, Homma M. Assessing potential drug-drug interactions between dabigatran etexilate and a P-glycoprotein inhibitor in renal impairment populations using physiologically based pharmacokinetic modeling. CPT Pharmacomet Syst Pharmacol. 2019;8(2):118–26.
doi: 10.1002/psp4.12382
Tylutki Z, Polak S, Wiśniowska B. Top-down, bottom-up and middle-out strategies for drug cardiac safety assessment via modeling and simulations. Curr Pharmacol Rep. 2016;2(4):171–7.
pubmed: 27429898
pmcid: 4929154
doi: 10.1007/s40495-016-0060-3
Ohno Y, Hisaka A, Suzuki H. General framework for the quantitative prediction of CYP3A4-mediated oral drug interactions based on the AUC increase by coadministration of standard drugs. Clin Pharmacokinet. 2007;46(8):681–96.
pubmed: 17655375
doi: 10.2165/00003088-200746080-00005
Ohno Y, Hisaka A, Ueno M, Suzuki H. General framework for the prediction of oral drug interactions caused by CYP3A4 induction from in vivo information. Clin Pharmacokinet. 2008;47(10):669–80.
pubmed: 18783297
doi: 10.2165/00003088-200847100-00004
Gabriel L, Tod M, Goutelle S. Quantitative prediction of drug interactions caused by CYP1A2 inhibitors and inducers. Clin Pharmacokinet. 2016;55(8):977–90.
pubmed: 26936044
doi: 10.1007/s40262-016-0371-x
Di Paolo V, Ferrari FM, Poggesi I, Quintieri L. Quantitative prediction of drug interactions caused by cytochrome P450 2B6 inhibition or induction. Clin Pharmacokinet. 2022;61(9):1297–306.
pubmed: 35857278
doi: 10.1007/s40262-022-01153-y
Tod M, Bourguignon L, Bleyzac N, Goutelle S. Quantitative prediction of interactions mediated by transporters and cytochromes: application to organic anion transporting polypeptides, breast cancer resistance protein and cytochrome 2C8. Clin Pharmacokinet. 2020;59(6):757–70.
pubmed: 31840223
doi: 10.1007/s40262-019-00853-2
Castellan AC, Tod M, Gueyffier F, Audars M, Cambriels F, Kassaï B, Nony P, Genophar Working Group. Quantitative prediction of the impact of drug interactions and genetic polymorphisms on cytochrome P450 2C9 substrate exposure. Clin Pharmacokinet. 2013;52(3):199–209.
pubmed: 23344982
doi: 10.1007/s40262-013-0031-3
Goutelle S, Bourguignon L, Bleyzac N, Berry J, Clavel-Grabit F, Tod M. In vivo quantitative prediction of the effect of gene polymorphisms and drug interactions on drug exposure for CYP2C19 substrates. AAPS J. 2013;15(2):415–26.
pubmed: 23319287
pmcid: 3675754
doi: 10.1208/s12248-012-9431-9
Tod M, Goutelle S, Clavel-Grabit F, Nicolas G, Charpiat B. Quantitative prediction of cytochrome P450 (CYP) 2D6-mediated drug interactions. Clin Pharmacokinet. 2011;50(8):519–30.
pubmed: 21740075
doi: 10.2165/11592620-000000000-00000
Tod M, Goutelle S, Bleyzac N, Bourguignon L. A generic model for quantitative prediction of interactions mediated by efflux transporters and cytochromes: application to P-glycoprotein and cytochrome 3A4. Clin Pharmacokinet. 2019;58(4):503–23.
pubmed: 30194612
doi: 10.1007/s40262-018-0711-0
Hisaka A, Kusama M, Ohno Y, Sugiyama Y, Suzuki H. A proposal for a pharmacokinetic interaction significance classification system (PISCS) based on predicted drug exposure changes and its potential application to alert classifications in product labelling. Clin Pharmacokinet. 2009;48(10):653–66.
pubmed: 19743887
doi: 10.2165/11317220-000000000-00000
Tod M, Nkoud-Mongo C, Gueyffier F. Impact of genetic polymorphism on drug–drug interactions mediated by cytochromes: a general approach. AAPS J. 2013;15(4):1242–52.
pubmed: 24027036
pmcid: 3787231
doi: 10.1208/s12248-013-9530-2
Hisaka A, Nakamura M, Tsukihashi A, Koh S, Suzuki H. Assessment of intestinal availability (FG) of substrate drugs of cytochrome p450s by analyzing changes in pharmacokinetic properties caused by drug-drug interactions. Drug Metab Dispos. 2014;42(10):1640–5.
pubmed: 25061161
doi: 10.1124/dmd.114.059147
Dokoumetzidis A, Aarons L. Analytical expressions for combining population pharmacokinetic parameters from different studies. J Biopharm Stat. 2008;18(4):662–76.
pubmed: 18607800
doi: 10.1080/10543400802071360
Langdon G, Gueorguieva I, Aarons L, Karlsson M. Linking preclinical and clinical whole-body physiologically based pharmacokinetic models with prior distributions in NONMEM. Eur J Clin Pharmacol. 2007;63(5):485–98.
pubmed: 17345074
doi: 10.1007/s00228-007-0264-x
Shibata Y, Tamemoto Y, Singh SP, Yoshitomo A, Hozuki S, Sato H, Hisaka A. Plausible drug interaction between cyclophosphamide and voriconazole via inhibition of CYP2B6. Drug Metab Pharmacokinet. 2021;39: 100396.
pubmed: 33992954
doi: 10.1016/j.dmpk.2021.100396
Njuguna NM, Umehara KI, Huth F, Schiller H, Chibale K, Camenisch G. Improvement of the chemical inhibition phenotyping assay by cross-reactivity correction. Drug Metab Pers Ther. 2016;31(4):221–8.
pubmed: 27718490
Hisaka A, Ohno Y, Yamamoto T, Suzuki H. Theoretical considerations on quantitative prediction of drug–drug interactions. Drug Metab Pharmacokinet. 2010;25(1):48–61.
pubmed: 20208388
doi: 10.2133/dmpk.25.48
Hisaka A, Ohno Y, Yamamoto T, Suzuki H. Prediction of pharmacokinetic drug–drug interaction caused by changes in cytochrome P450 activity using in vivo information. Pharmacol Ther. 2010;125(2):230–48.
pubmed: 19951720
doi: 10.1016/j.pharmthera.2009.10.011
Maeda K, Hisaka A, Ito K, Ohno Y, Ishiguro A, Sato R, Nagai N. Classification of drugs for evaluating drug interaction in drug development and clinical management. Drug Metab Pharmacokinet. 2021;41: 100414.
pubmed: 34666290
doi: 10.1016/j.dmpk.2021.100414
Kato M, Chiba K, Hisaka A, Ishigami M, Kayama M, Mizuno N, Nagata Y, Takakuwa S, Tsukamoto Y, Ueda K, Kusuhara H, Ito K, Sugiyama Y. The intestinal first-pass metabolism of substrates of CYP3A4 and P-glycoprotein-quantitative analysis based on information from the literature. Drug Metab Pharmacokinet. 2003;18(6):365–72.
pubmed: 15618757
doi: 10.2133/dmpk.18.365
Clark JS, Gelfand AE. Hierarchical modelling for the environmental sciences. Oxford: Oxford University Press; 2006.
Spiegelhalter D, Thomas A, Best N, Lunn D. WinBUGS user manual. Cambridge: MRC Biostatistics Unit; 2003.
Sturtz S, Ligges U, Gelman A. R2WinBUGS: a package for running WinBUGS from R. J Stat Soft. 2005;12:1–16.
doi: 10.18637/jss.v012.i03
R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
Gelman A, Carlin JB, Stern HS, Rubin DB. Bayesian data analysis. 2nd ed. London: Chapman and Hall/CRC; 2004.
Zhang W, Ramamoorthy Y, Kilicarslan T, Nolte H, Tyndale RF, Sellers EM. Inhibition of cytochromes P450 by antifungal imidazole derivatives. Drug Metab Dispos. 2002;30(3):314–8.
pubmed: 11854151
doi: 10.1124/dmd.30.3.314
Niwa T, Shiraga T, Takagi A. Drug–drug interaction of antifungal drugs. Yakugaku Zasshi. 2005;125(10):795–805 (Japanese).
pubmed: 16205037
doi: 10.1248/yakushi.125.795
Brown HS, Galetin A, Hallifax D, Houston JB. Prediction of in vivo drug–drug interactions from in vitro data: factors affecting prototypic drug-drug interactions involving CYP2C9, CYP2D6 and CYP3A4. Clin Pharmacokinet. 2006;45(10):1035–50.
pubmed: 16984215
doi: 10.2165/00003088-200645100-00006
Tamemoto Y, Shibata Y, Hashimoto N, Sato H, Hisaka A. Involvement of multiple cytochrome P450 isoenzymes in drug interactions between ritonavir and direct oral anticoagulants. Drug Metab Pharmacokinet. (In press).
International Transporter Consortium, Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, Dahlin A, Evers R, Fischer V, Hillgren KM, Hoffmaster KA, Ishikawa T, Keppler D, Kim RB, Lee CA, Niemi M, Polli JW, Sugiyama Y, Swaan PW, Ware JA, Wright SH, Yee SW, Zamek-Gliszczynski MJ, Zhang L. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9(3):215–36.
doi: 10.1038/nrd3028
Yoshikado T, Yoshida K, Kotani N, Nakada T, Asaumi R, Toshimoto K, Maeda K, Kusuhara H, Sugiyama Y. Quantitative analyses of hepatic OATP-mediated interactions between statins and inhibitors using PBPK modeling with a parameter optimization method. Clin Pharmacol Ther. 2016;100(5):513–23.
pubmed: 27170342
doi: 10.1002/cpt.391
Hanke N, Gómez-Mantilla JD, Ishiguro N, Stopfer P, Nock V. Physiologically based pharmacokinetic modeling of rosuvastatin to predict transporter-mediated drug–drug interactions. Pharm Res. 2021;38(10):1645–61.
pubmed: 34664206
pmcid: 8602162
doi: 10.1007/s11095-021-03109-6
Yoshitomo A, Asano S, Hozuki S, Tamemoto Y, Shibata Y, Hashimoto N, Takahashi K, Sasaki Y, Ozawa N, Kageyama M, Iijima T, Kazuki Y, Sato H, Hisaka A. Significance of basal membrane permeability of epithelial cells in predicting intestinal drug absorption. Drug Metab Dispos. 2023;51(3):318–28.
pubmed: 36810197
doi: 10.1124/dmd.122.000907