Linking muscle architecture and function
Fascicle length
Force potential
Force-length
Force-velocity
Muscle strength
Vastus lateralis
Journal
PeerJ
ISSN: 2167-8359
Titre abrégé: PeerJ
Pays: United States
ID NLM: 101603425
Informations de publication
Date de publication:
2023
2023
Historique:
received:
22
11
2022
accepted:
15
03
2023
medline:
21
4
2023
pubmed:
20
4
2023
entrez:
20
04
2023
Statut:
epublish
Résumé
Despite the clear theoretical link between sarcomere arrangement and force production, the relationship between muscle architecture and function remain ambiguous We used two frequently used ultrasound-based approaches to assess the relationships between vastus lateralis architecture parameters obtained in three common conditions of muscle lengths and contractile states, and the mechanical output of the muscle in twenty-one healthy subjects. The relationship between outcomes obtained in different conditions were also examined. Muscle architecture was analysed in panoramic ultrasound scans at rest with the knee fully extended and in regular scans at an angle close to maximum force (60°), at rest and under maximum contraction. Isokinetic and isometric strength tests were used to estimate muscle force production at various fascicle velocities. Measurements of fascicle length, pennation angle and thickness obtained under different experimental conditions correlated moderately with each other ( These findings reflect methodological limitations of current approaches to measure fascicle length and pennation angle
Sections du résumé
Background
Despite the clear theoretical link between sarcomere arrangement and force production, the relationship between muscle architecture and function remain ambiguous
Methods
We used two frequently used ultrasound-based approaches to assess the relationships between vastus lateralis architecture parameters obtained in three common conditions of muscle lengths and contractile states, and the mechanical output of the muscle in twenty-one healthy subjects. The relationship between outcomes obtained in different conditions were also examined. Muscle architecture was analysed in panoramic ultrasound scans at rest with the knee fully extended and in regular scans at an angle close to maximum force (60°), at rest and under maximum contraction. Isokinetic and isometric strength tests were used to estimate muscle force production at various fascicle velocities.
Results
Measurements of fascicle length, pennation angle and thickness obtained under different experimental conditions correlated moderately with each other (
Conclusion
These findings reflect methodological limitations of current approaches to measure fascicle length and pennation angle
Identifiants
pubmed: 37077309
doi: 10.7717/peerj.15194
pii: 15194
pmc: PMC10108853
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e15194Informations de copyright
©2023 Werkhausen et al.
Déclaration de conflit d'intérêts
The authors declare there are no competing interests.
Références
Med Sci Sports Exerc. 2000 Jun;32(6):1125-9
pubmed: 10862540
Ultrasound Med Biol. 2018 Dec;44(12):2492-2504
pubmed: 30185385
J Appl Physiol (1985). 2018 Sep 13;:
pubmed: 30212307
J Physiol Anthropol Appl Human Sci. 2001 Mar;20(2):141-7
pubmed: 11385937
J Ultrasound Med. 2014 May;33(5):769-77
pubmed: 24764331
Biophys J. 2020 Dec 15;119(12):2372-2377
pubmed: 33217382
PLoS One. 2020 Feb 12;15(2):e0229034
pubmed: 32049973
J Appl Physiol (1985). 2016 Jan 1;120(1):63-9
pubmed: 26494445
J Appl Biomech. 2013 Aug;29(4):405-12
pubmed: 22927507
J Appl Physiol (1985). 2009 Aug;107(2):523-30
pubmed: 19478195
Med Sci Sports Exerc. 2020 Jan;52(1):233-243
pubmed: 31403609
J Appl Physiol (1985). 2011 Nov;111(5):1491-6
pubmed: 21836045
Neuromuscul Disord. 1995 Sep;5(5):415-22
pubmed: 7496175
Eur J Appl Physiol. 2017 Feb;117(2):289-299
pubmed: 28044199
Biol Open. 2019 Dec 16;8(12):
pubmed: 31784422
Comput Methods Programs Biomed. 2016 May;128:111-8
pubmed: 27040836
Muscle Nerve. 2000 Nov;23(11):1647-66
pubmed: 11054744
Eur J Appl Physiol Occup Physiol. 1995;72(1-2):37-43
pubmed: 8789568
Gait Posture. 2011 May;34(1):138-41
pubmed: 21474319
J Appl Physiol (1985). 2000 Mar;88(3):811-6
pubmed: 10710372
Med Sci Sports Exerc. 2003 Dec;35(12):2013-22
pubmed: 14652496
Eur J Appl Physiol. 2021 Apr;121(4):1099-1110
pubmed: 33458800
J Appl Physiol (1985). 2018 Apr 1;124(4):993-1002
pubmed: 29357487
Eur J Appl Physiol. 2016 Jun;116(6):1159-77
pubmed: 27076217
J Exp Biol. 2016 Jan;219(Pt 2):276-84
pubmed: 26792340
Proc Biol Sci. 2010 May 22;277(1687):1523-30
pubmed: 20106852
J Physiol. 2018 Jun;596(11):2121-2129
pubmed: 29604053
J Exp Biol. 2009 Nov;212(Pt 22):3700-7
pubmed: 19880732
Front Physiol. 2017 Dec 07;8:1015
pubmed: 29270135
J Biomech. 2007;40(3):645-51
pubmed: 16542664
PeerJ. 2017 Dec 15;5:e4164
pubmed: 29259845
J Biomech. 2018 Oct 26;80:1-7
pubmed: 30266195
Clin Physiol Funct Imaging. 2015 Sep;35(5):376-82
pubmed: 24915999
J Biomech. 2022 Feb;132:110954
pubmed: 35074689
J Physiol. 1979 Aug;293:379-92
pubmed: 315465
Ergeb Anat Entwicklungsgesch. 1965;38:115-42
pubmed: 5319094
J Anat. 2008 Oct;213(4):361-72
pubmed: 18657259
J Sport Health Sci. 2022 Jan;11(1):43-49
pubmed: 34509714
Hum Mov Sci. 2018 Apr;58:10-20
pubmed: 29334674
Ultrasound. 2015 Aug;23(3):166-73
pubmed: 27433253
Acta Physiol Scand. 1983 Feb;117(2):219-26
pubmed: 6223509
J Appl Physiol (1985). 2007 Jan;102(1):368-73
pubmed: 17053104
J Physiol. 1966 May;184(1):170-92
pubmed: 5921536
Sci Rep. 2021 Jun 25;11(1):13332
pubmed: 34172797
J Neurophysiol. 1982 Jul;48(1):192-201
pubmed: 7119845
J Biomech. 2017 Nov 7;64:240-244
pubmed: 28985894
J Appl Physiol (1985). 2014 Dec 1;117(11):1388-97
pubmed: 25324510
J Biomech. 2019 Mar 27;86:225-231
pubmed: 30736963
Anesth Analg. 2018 May;126(5):1763-1768
pubmed: 29481436
Eur J Appl Physiol Occup Physiol. 1992;64(1):68-72
pubmed: 1735415
J Cachexia Sarcopenia Muscle. 2017 Jun;8(3):475-481
pubmed: 28052593