The structure of prevacuolar compartments in Neurospora crassa as observed with super-resolution microscopy.
Journal
PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081
Informations de publication
Date de publication:
2023
2023
Historique:
received:
16
11
2022
accepted:
28
02
2023
medline:
26
4
2023
pubmed:
24
4
2023
entrez:
24
04
2023
Statut:
epublish
Résumé
The hyphal tips of Neurospora crassa have prevacuolar compartments (PVCs) of unusual size and shape. They appear to function as late endosomes/multivesicular bodies. PVCs are highly variable in size (1-3 microns) and exhibit rapid changes in structure. When visualized with tagged integral membrane proteins of the vacuole the PVCs appear as ring or horseshoe-shaped structures. Some soluble molecules that fill the lumen of mature spherical vacuoles do not appear in the lumen of the PVC but are seen in the ring or horseshoe-shaped structures. By using super-resolution microscopy I have achieved a better understanding of the structure of the PVCs. The PVC appears to form a pouch with an open end. The walls of the pouch are composed of small vesicles or tubules, approximately 250 nm in diameter. The shape of the PVC can change in a few seconds, caused by the apparent movement of the vesicles/tubules. In approximately 85% of the PVCs dynein and dynactin were observed as poorly defined lumps inside the pouch-shaped PVCs. Within the PVCs they were not attached to microtubules nor did they appear to be in direct contact with the vesicles and tubules that formed the PVCs. In the future, the structure and relatively large size of the Neurospora PVC may allow us to visualize protein-sorting events that occur in the formation of vacuoles.
Identifiants
pubmed: 37093794
doi: 10.1371/journal.pone.0282989
pii: PONE-D-22-31627
pmc: PMC10124863
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0282989Informations de copyright
Copyright: © 2023 Barry J. Bowman. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Déclaration de conflit d'intérêts
I have no competing interest.
Références
Nat Rev Mol Cell Biol. 2007 Nov;8(11):917-29
pubmed: 17912264
Fungal Genet Biol. 2004 Oct;41(10):897-910
pubmed: 15341912
Eukaryot Cell. 2015 Dec;14(12):1253-63
pubmed: 26453652
Proc Jpn Acad Ser B Phys Biol Sci. 2019;95(6):261-277
pubmed: 31189779
Microbiology (Reading). 2000 Jul;146 ( Pt 7):1743-1752
pubmed: 10878138
Cytoskeleton (Hoboken). 2012 Sep;69(9):613-24
pubmed: 22991199
J Cell Sci. 1993 Nov;106 ( Pt 3):823-30
pubmed: 8308065
Fungal Genet Biol. 1998 Jun-Jul;24(1-2):101-9
pubmed: 9742196
Eukaryot Cell. 2011 May;10(5):683-95
pubmed: 21296914
Eukaryot Cell. 2009 Dec;8(12):1845-55
pubmed: 19801418
Curr Opin Cell Biol. 2013 Aug;25(4):414-9
pubmed: 23639309
Fungal Biol. 2011 Jun;115(6):446-74
pubmed: 21640311
Mol Biol Cell. 2012 May;23(10):1889-901
pubmed: 22456509
Fungal Genet Biol. 1998 Jun;24(1-2):86-100
pubmed: 9742195
Cell Logist. 2012 Jan 1;2(1):2-14
pubmed: 22645705
Annu Rev Cell Dev Biol. 2012;28:337-62
pubmed: 22831642
Front Microbiol. 2019 Aug 14;10:1825
pubmed: 31474947
J Biol Chem. 1992 Sep 15;267(26):18783-9
pubmed: 1388158
Genetics. 2012 Aug;191(4):1157-79
pubmed: 22649085
J Cell Biol. 1987 Oct;105(4):1539-47
pubmed: 2444598
Traffic. 2001 Sep;2(9):612-21
pubmed: 11555415
Biochim Biophys Acta. 2005 Jul 10;1744(3):438-54
pubmed: 15913810
Nature. 1958 Nov 1;182(4644):1249-50
pubmed: 13590301
Curr Opin Cell Biol. 2003 Aug;15(4):446-55
pubmed: 12892785
Arch Microbiol. 2003 Aug;180(2):108-17
pubmed: 12819858
Gene. 2002 May 29;291(1-2):77-84
pubmed: 12095681
Mycol Res. 2009 Apr;113(Pt 4):417-31
pubmed: 19114102
Nat Rev Mol Cell Biol. 2009 Aug;10(8):513-25
pubmed: 19603039