Fetal brain activity and the free energy principle.
artificial intelligence
chaos
facial recognition
fetus
free energy
ultrasonography
Journal
Journal of perinatal medicine
ISSN: 1619-3997
Titre abrégé: J Perinat Med
Pays: Germany
ID NLM: 0361031
Informations de publication
Date de publication:
26 Sep 2023
26 Sep 2023
Historique:
received:
06
03
2023
accepted:
12
04
2023
medline:
8
9
2023
pubmed:
25
4
2023
entrez:
25
04
2023
Statut:
epublish
Résumé
To study whether the free energy principle can explain fetal brain activity and the existence of fetal consciousness via a chaotic dimension derived using artificial intelligence. In this observational study, we used a four-dimensional ultrasound technique obtained to collect images of fetal faces from pregnancies at 27-37 weeks of gestation, between February and December 2021. We developed an artificial intelligence classifier that recognizes fetal facial expressions, which are thought to relate to fetal brain activity. We then applied the classifier to video files of facial images to generate each expression category's probabilities. We calculated the chaotic dimensions from the probability lists, and we created and investigated the free energy principle's mathematical model that was assumed to be linked to the chaotic dimension. We used a Mann-Whitney test, linear regression test, and one-way analysis of variance for statistical analysis. The chaotic dimension revealed that the fetus had dense and sparse states of brain activity, which fluctuated at a statistically significant level. The chaotic dimension and free energy were larger in the sparse state than in the dense state. The fluctuating free energy suggests consciousness seemed to exist in the fetus after 27 weeks.
Identifiants
pubmed: 37096665
pii: jpm-2023-0092
doi: 10.1515/jpm-2023-0092
doi:
Types de publication
Observational Study
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
925-931Informations de copyright
© 2023 Walter de Gruyter GmbH, Berlin/Boston.
Références
Hata, T, Kanenishi, K, Hanaoka, U, Marumo, G. HDIive and 4D ultrasound in the assessment of fetal facial expressions. Donald Sch J Ultrasound Obstet Gynecol 2015;9:44–50.
AboEllail, MAM, Hata, T. Fetal face as important indicator of fetal brain function. J Perinat Med 2017;45:729–36. https://doi.org/10.1515/jpm-2016-0377 .
doi: 10.1515/jpm-2016-0377
Hata, T, Dai, SY, Marumo, G. Ultrasound for evaluation of fetal neurobehavioural development: from 2-D to 4-D ultrasound. Infant Child Dev 2010;19:99–118. https://doi.org/10.1002/icd.659 .
doi: 10.1002/icd.659
Hata, T. Current status of fetal neurodevelopmental assessment: 4D ultrasound study. J Obstet Gynaecol Res 2016;42:1211–21. https://doi.org/10.1111/jog.13099 .
doi: 10.1111/jog.13099
Miyagi, Y, Hata, T, Bouno, S, Koyanagi, A, Miyake, T. Recognition of facial expression of fetuses by artificial intelligence (AI). J Perinat Med 2021;49:596–603. https://doi.org/10.1515/jpm-2020-0537 .
doi: 10.1515/jpm-2020-0537
Miyagi, Y, Hata, T, Bouno, S, Koyanagi, A, Miyake, T. Recognition of fetal facial expressions using artificial intelligence deep learning. Donald Sch J Ultrasound Obstet Gynecol 2021;15:223–8. https://doi.org/10.5005/jp-journals-10009-1710 .
doi: 10.5005/jp-journals-10009-1710
Miyagi, Y, Hata, T, Bouno, S, Koyanagi, A, Miyake, T. Artificial intelligence to understand fluctuation of fetal brain activity by recognizing facial expressions. Int J Gynecol Obstet 2022;1–9. https://doi.org/10.1002/ijgo.14569 .
doi: 10.1002/ijgo.14569
Friston, K, Kilner, J, Harrison, L. A free energy principle for the brain. J Physiol Paris 2006;100:70–87. https://doi.org/10.1016/j.jphysparis.2006.10.001 .
doi: 10.1016/j.jphysparis.2006.10.001
Friston, K. The free-energy principle: a rough guide to the brain? Trends Cognit Sci 2009;13:293–301. https://doi.org/10.1016/j.tics.2009.04.005 .
doi: 10.1016/j.tics.2009.04.005
Friston, KJ, Daunizeau, J, Kilner, J, Kiebel, SJ. Action and behavior: a free-energy formulation. Biol Cybern 2010;102:227–60. https://doi.org/10.1007/s00422-010-0364-z .
doi: 10.1007/s00422-010-0364-z
Friston, KJ, Daunizeau, J, Kiebel, SJ. Reinforcement learning or active inference? PLoS One 2009;4:e6421. https://doi.org/10.1371/journal.pone.0006421 .
doi: 10.1371/journal.pone.0006421
Joyce, JM. Kullback-leibler divergence. In: Lovric, M, editor. International encyclopedia of statistical science . Berlin, Heidelberg: Springer; 2011:720–2 pp.
Inui, T. The free-energy principle: a unified theory of brain functions. Brain Neural Network 2018;25:123–34. https://doi.org/10.3902/jnns.25.123 .
doi: 10.3902/jnns.25.123
Miyagi, Y, Miyagi, Y, Terada, S, Kudo, T. Variations of multifractal structure in the fetal heartbeats. Acta Med Okayama 2003;57:49–52. https://doi.org/10.18926/AMO/32821 .
doi: 10.18926/AMO/32821
Grassberger, P, Procaccia, I. Characterization of strange attractors. Phys Rev Lett 1983;50:346–9. https://doi.org/10.1103/physrevlett.50.346 .
doi: 10.1103/physrevlett.50.346
Grassberger, P, Procaccia, I. Dimensions and entropies of strange attractors from a fluctuating dynamics approach. Physica D 1984;13:34–54. https://doi.org/10.1016/0167-2789(84)90269-0 .
doi: 10.1016/0167-2789(84)90269-0
Farmer, JD, Ott, E, York, JA. The dimension of chaotic attractors. Physica D 1983;7:153–80. https://doi.org/10.1016/0167-2789(83)90125-2 .
doi: 10.1016/0167-2789(83)90125-2
Halsey, TC, Jensen, MH, Kadanoff, LP, Procaccia, I, Shraiman, BI. Fractal measures and their singularities: the characterization of strange sets. Phys Rev A 1986;33:1141–51. https://doi.org/10.1103/physreva.33.1141 .
doi: 10.1103/physreva.33.1141
Hentschel, HE, Procaccia, I. The infinite number of generalized dimensions of fractals and strange attractors. Phys Nonlinear Phenom 1983;8:435–44. https://doi.org/10.1016/0167-2789(83)90235-x .
doi: 10.1016/0167-2789(83)90235-x
Isomura, T, Shimazaki, H, Friston, KJ. Canonical neural networks perform active inference. Commun Biol 2022;5:55. https://doi.org/10.1038/s42003-021-02994-2 .
doi: 10.1038/s42003-021-02994-2
Friston, K. Am i self-conscious? (or does self-organization entail self-consciousness?). Front Psychol 2018;9:579. https://doi.org/10.3389/fpsyg.2018.00579 .
doi: 10.3389/fpsyg.2018.00579
Yoshida, M, Taguchi, S. Free energy principle and visual consciousness. Brain Neural Networs 2018;25:53–70. https://doi.org/10.3902/jnns.25.53 .
doi: 10.3902/jnns.25.53
Kim, J, Gulati, T, Ganguly, K. Competing roles of slow oscillations and delta waves in memory consolidation versus forgetting. Cell 2019;179:514–26. https://doi.org/10.1016/j.cell.2019.08.040 .
doi: 10.1016/j.cell.2019.08.040
Yoshida, K, Toyoizumi, T. Information maximization explains state-dependent synaptic plasticity and memory reorganization during non-rapid eye movement sleep. PNAS Nexus 2023;2:pgac286. https://doi.org/10.1093/pnasnexus/pgac286 .
doi: 10.1093/pnasnexus/pgac286