Coronary Perfusion After Valve-in-Valve Transcatheter Aortic Valve Implantation in Small Aortic Root: In Vitro Experimental Assessment.
Humans
Transcatheter Aortic Valve Replacement
/ adverse effects
Aortic Valve
/ diagnostic imaging
Aorta, Thoracic
/ surgery
Heart Valve Prosthesis
Prosthesis Failure
Heart Valve Prosthesis Implantation
/ adverse effects
Perfusion
Coronary Occlusion
Bioprosthesis
Aortic Valve Stenosis
/ diagnostic imaging
Prosthesis Design
Treatment Outcome
Aortic root
Aortic valve
Bench
Coronary flow
Coronary obstruction
In vitro
TAVI
TAVR
Valve-in-valve
Journal
Journal of cardiovascular translational research
ISSN: 1937-5395
Titre abrégé: J Cardiovasc Transl Res
Pays: United States
ID NLM: 101468585
Informations de publication
Date de publication:
08 2023
08 2023
Historique:
received:
04
08
2022
accepted:
13
02
2023
medline:
6
9
2023
pubmed:
25
4
2023
entrez:
25
4
2023
Statut:
ppublish
Résumé
Coronary flow obstruction following transcatheter aortic valve-in-valve implantation (VIV-TAVI) is associated with a high mortality risk. The aim of this work was to quantify the coronary perfusion after VIV-TAVI in a high-risk aortic root anatomy. 3D printed models of small aortic root were used to simulate the implantation of a TAVI prosthesis (Portico 23) into surgical prostheses (Trifecta 19 and 21). The aortic root models were tested in a pulsatile in vitro bench setup with a coronary perfusion simulator. The tests were performed at baseline and post-VIV-TAVI procedure in aligned and misaligned commissural configurations under simulated hemodynamic rest and exercise conditions. The experimental design provided highly controllable and repeatable flow and pressure conditions. The left and right coronary mean flow did not differ significantly at pre- and post-VIV-TAVI procedure in any tested configurations. The commissural misalignment did not induce any significant alterations to the coronary flow. High-risk aortic root anatomy did not trigger coronary ostia obstruction or coronary flow alteration after transcatheter aortic valve implantation in a surgical bioprosthesis as shown from in-vitro flow loop tests.
Identifiants
pubmed: 37097591
doi: 10.1007/s12265-023-10364-y
pii: 10.1007/s12265-023-10364-y
pmc: PMC10480284
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
956-967Informations de copyright
© 2023. The Author(s).
Références
Vahanian A, Beyersdorf F, Praz F, Milojevic M, Baldus S, Bauersachs J, … Wojakowski W (2022) 2021 ESC/EACTS Guidelines for the management of valvular heart disease. EuroIntervention. 17(14):E1126–E1196. https://doi.org/10.4244/EIJ-E-21-00009 .
Tuzcu EM, Kapadia SR, Vemulapalli S, Carroll JD, Holmes DR, Mack MJ, … Svensson LG (2018) Transcatheter aortic valve replacement of failed surgically implanted bioprostheses: the STS/ACC Registry. J Am Coll Cardiol. 72(4), 370–382. https://doi.org/10.1016/J.JACC.2018.04.074 .
Webb JG, Murdoch D, Dvir D. Will transcatheter replacement become the new default therapy when bioprosthetic valves fail? J Am Coll Cardiol. 2018;72(4):383–5. https://doi.org/10.1016/J.JACC.2018.04.073 .
doi: 10.1016/J.JACC.2018.04.073
pubmed: 30025573
Ribeiro HB, Rodés-Cabau J, Blanke P, Leipsic J, Kwan Park J, Bapat V, … Dvir D (2018) Incidence, predictors, and clinical outcomes of coronary obstruction following transcatheter aortic valve replacement for degenerative bioprosthetic surgical valves: insights from the VIVID registry. Eur Heart J. 39(8):687–695. https://doi.org/10.1093/EURHEARTJ/EHX455 .
Dvir D, Webb J, Brecker S, Bleiziffer S, Hildick-Smith D, Colombo A, … Kornowski R (2012) Transcatheter aortic valve replacement for degenerative bioprosthetic surgical valves: results from the global valve-in-valve registry. Circulation. 126(19):2335–2344. https://doi.org/10.1161/CIRCULATIONAHA.112.104505 .
Adamo M, Fiorina C, Curello S, Chizzola G, Pezzotti E, Gavazzi E, … Ettori F (2017) Self-expanding transcatheter aortic valve implantation for degenerated small Mitroflow bioprosthesis: early and midterm outcomes. EuroIntervention. 13(9):e1032–e1039. https://doi.org/10.4244/EIJ-D-17-00193 .
Jabbour RJ, Tanaka A, Finkelstein A, Mack M, Tamburino C, van Mieghem N, … Latib A (2018) Delayed coronary obstruction after transcatheter aortic valve replacement. J Am Coll Cardiol. 71(14):1513–1524. https://doi.org/10.1016/J.JACC.2018.01.066 .
Tarantini G, Nai Fovino L, Scotti A, Massussi M, Cardaioli F, Rodinò G, … Iliceto S (2022) Coronary access after transcatheter aortic valve replacement with commissural alignment: the ALIGN-ACCESS study. Circulation. Cardiovasc Interv. 15(2):e011045. https://doi.org/10.1161/CIRCINTERVENTIONS.121.011045 .
Simonato M, Azadani AN, Webb J, Leipsic J, Kornowski R, Vahanian A, … Dvir D (2016) In vitro evaluation of implantation depth in valve-in-valve using different transcatheter heart valves. EuroIntervention. 12(7):909–917. https://doi.org/10.4244/EIJV12I7A149 .
Tzikas A, Amrane H, Bedogni F, Brambilla N, Kefer J, Manoharan G, … Sondergaard L (2016) Transcatheter aortic valve replacement using the portico system: 10 things to remember. J Interv Cardiol. 29(5):523–529. https://doi.org/10.1111/JOIC.12322 .
Kitamura M, Wilde J, Dumpies O, Richter I, Obradovic D, Krieghoff C, … Abdel-Wahab M (2022) Risk assessment of coronary obstruction during transcatheter aortic valve replacement: insights from Post-BASILICA computed tomography. Cardiovasc Interv. 15(5), 496–507. https://doi.org/10.1016/J.JCIN.2022.01.003 .
Lanzarone E, Vismara R, Fiore GB. A new pulsatile volumetric device with biomorphic valves for the in vitro study of the cardiovascular system. Artif Organs. 2009;33(12):1048–62. https://doi.org/10.1111/j.1525-1594.2009.00812.x .
doi: 10.1111/j.1525-1594.2009.00812.x
pubmed: 19604227
Piola M, Vismara R, Tasca G, Lucherini F, Redaelli P, Soncini M, … Fiore GB (2016) Design of a simple coronary impedance simulator for the in vitro study of the complex coronary hemodynamics. Physiol Meas. 37(12):2274–2285. https://doi.org/10.1088/1361-6579/37/12/2274 .
Jaworek M, Gelpi G, Romagnoni C, Lucherini F, Contino M, Fiore GB, … Antona C (2019) Long-arm clip for transcatheter edge-to-edge treatment of mitral and tricuspid regurgitation – ex-vivo beating heart study. Struct Heart. 3(3):211–219. https://doi.org/10.1080/24748706.2019.1590666
Shah P, Romagnoni C, Jaworek M, Lucherini F, Contino M, Menkis A, … Vismara R (2017) A novel system for the treatment of aortic annular dilation: an ex vivo investigation. Eur J Cardio-Thoracic Surg. 52(6):1090–1097. https://doi.org/10.1093/EJCTS/EZX203 .
Vismara R, Gelpi G, Prabhu S, Romitelli P, Troxler LG, Mangini A, … Antona C (2016) Transcatheter edge-to-edge treatment of functional tricuspid regurgitation in an ex vivo pulsatile heart model. J Am Coll Cardiol. 68(10):1024–1033. https://doi.org/10.1016/j.jacc.2016.06.022 .
Tasca G, Jaworek M, Lucherini F, Trinca F, Redaelli P, Antona C, Vismara R. Leaflet kinematics after the Yacoub and Florida-sleeve operations: results of an in vitro study. Eur J Cardiothorac Surg. 2021;59(3):674–9. https://doi.org/10.1093/EJCTS/EZAA370 .
doi: 10.1093/EJCTS/EZAA370
pubmed: 33236049
Muller O, Mangiacapra F, Ntalianis A, Verhamme KMC, Trana C, Hamilos M, … de Bruyne B (2011) Long-term follow-up after fractional flow reserve–guided treatment strategy in patients with an isolated proximal left anterior descending coronary artery stenosis. JACC: Cardiovasc Interv. 4(11):1175–1182. https://doi.org/10.1016/J.JCIN.2011.09.007 .
Hatoum H, Lilly SM, Crestanello J, Dasi LP. A case study on implantation strategies to mitigate coronary obstruction in a patient receiving transcatheter aortic valve replacement. J Biomech. 2019;89:115–8. https://doi.org/10.1016/J.JBIOMECH.2019.04.010 .
doi: 10.1016/J.JBIOMECH.2019.04.010
pubmed: 31000346
Sankaran S, Moghadam ME, Kahn AM, Tseng EE, Guccione JM, Marsden AL. Patient-specific multiscale modeling of blood flow for coronary artery bypass graft surgery. Ann Biomed Eng. 2012;40(10):2228–42. https://doi.org/10.1007/S10439-012-0579-3/FIGURES/13 .
doi: 10.1007/S10439-012-0579-3/FIGURES/13
pubmed: 22539149
pmcid: 3570226
Hatoum H, Gooden SCM, Sathananthan J, Sellers S, Kutting M, Marx P, … Dasi LP (2021) Neosinus and sinus flow after self-expanding and balloon-expandable transcatheter aortic valve replacement. JACC: Cardiovasc Interv. 14(24):2657–2666. https://doi.org/10.1016/j.jcin.2021.09.013 .
Dvir D, Leipsic J, Blanke P, Ribeiro HB, Kornowski R, Pichard A, … Webb JG (2015) Coronary obstruction in transcatheter aortic valve-in-valve implantation preprocedural evaluation, device selection, protection, and treatment. Circulation: Cardiovascular Interventions. Lippincott Williams Wilkins. https://doi.org/10.1161/CIRCINTERVENTIONS.114.002079 .
Avrahami I, Even-Chen B, Liberzon A (2020) Hemodynamic effects of aortic valve and heart rate on coronary perfusion. Clin Biomech. 78(June):105075. https://doi.org/10.1016/j.clinbiomech.2020.105075 .
Russo JJ, Yuen T, Tan J, Willson AB, Gurvitch R (2022) Assessment of coronary artery obstruction risk during transcatheter aortic valve replacement utilising 3D-printing. Heart, Lung Circ. 0(0). https://doi.org/10.1016/J.HLC.2022.01.007 .
Voudris V, Iakovou I, Kosmas I, Sbarouni E. Repeated transcatheter aortic valve implantation for the treatment of a degenerated transcatheter aortic valve implantation valve (valve-in-valve technique): a case report. Eur Heart J-Case Rep. 2020;4(6):1–6. https://doi.org/10.1093/EHJCR/YTAA256 .
doi: 10.1093/EHJCR/YTAA256
pubmed: 34109287
pmcid: 8183662
Azadani AN, Reardon M, Simonato M, Aldea G, Nickenig G, Kornowski R, Dvir D. Effect of transcatheter aortic valve size and position on valve-in-valve hemodynamics: an in vitro study. J Thorac Cardiovasc Surg. 2017;153(6):1303-1315.e1. https://doi.org/10.1016/j.jtcvs.2016.12.057 .
doi: 10.1016/j.jtcvs.2016.12.057
pubmed: 28283233
Stock S, Scharfschwerdt M, Meyer-Saraei R, Richardt D, Charitos EI, Sievers H-H, Hanke T. In vitro coronary flow after transcatheter aortic valve-in-valve implantation: a comparison of 2 valves. J Thorac Cardiovasc Surg. 2017;153(2):255-263.e1. https://doi.org/10.1016/j.jtcvs.2016.09.086 .
doi: 10.1016/j.jtcvs.2016.09.086
pubmed: 28104190
Fuchs A, Kofoed KF, Yoon S-H, Schaffner Y, Bieliauskas G, Thyregod HG, … Bapat V (2018) Commissural alignment of bioprosthetic aortic valve and native aortic valve following surgical and transcatheter aortic valve replacement and its impact on valvular function and coronary filling. JACC: Cardiovasc Interv. 11(17):1733–1743. https://doi.org/10.1016/j.jcin.2018.05.043 .
Voigtländer L, Seiffert M. Expanding TAVI to low and intermediate risk patientS. Front Cardiovasc Med. 2018;5:92. https://doi.org/10.3389/FCVM.2018.00092/BIBTEX .
doi: 10.3389/FCVM.2018.00092/BIBTEX
pubmed: 30050909
pmcid: 6052659
Bakhtiary F, Dzemali O, Steinseiffer U, Schmitz C, Glasmacher B, Moritz A, Kleine P. Hydrodynamic comparison of biological prostheses during progressive valve calcification in a simulated exercise situation. An in vitro study. Eur J Cardio-Thoracic Surg. 2008;34(5):960–3. https://doi.org/10.1016/j.ejcts.2008.05.060 .
doi: 10.1016/j.ejcts.2008.05.060