New Histone Lysine Acylation Biomarkers and Their Roles in Epigenetic Regulation.


Journal

Current protocols
ISSN: 2691-1299
Titre abrégé: Curr Protoc
Pays: United States
ID NLM: 101773894

Informations de publication

Date de publication:
Apr 2023
Historique:
medline: 27 4 2023
pubmed: 26 4 2023
entrez: 26 4 2023
Statut: ppublish

Résumé

Protein posttranslational modification (PTM) is a biochemical mechanism benefitting cellular adaptation to dynamic intracellular and environmental conditions. Recently, several acylation marks have been identified as new protein PTMs occurring on specific lysine residues in mammalian cells: isobutyrylation, methacrylation, benzoylation, isonicotinylation, and lactylation. These acylation marks were initially discovered to occur on nucleosomal histones, but they potentially occur as prevalent biomarkers on non-histone proteins as well. The existence of these PTMs is a downstream consequence of metabolism and demonstrates the intimate crosstalk between active cellular metabolites and regulation of protein function. Emerging evidence indicates that these acylation marks on histones affect DNA transcription and are functionally distinct from the well-studied lysine acetylation. Herein, we discuss enzymatic regulation and metabolic etiology of these acylations, 'reader' proteins that recognize different acylations, and their possible physiological and pathological functions. Several of these modifications correlate with other well-studied acylations and fine-tune the regulation of gene expression. Overall, findings of these acylation marks reveal new molecular links between metabolism and epigenetics and open up many questions for future investigation. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC.

Identifiants

pubmed: 37098732
doi: 10.1002/cpz1.746
doi:

Substances chimiques

Histones 0
Lysine K3Z4F929H6
Biomarkers 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e746

Informations de copyright

© 2023 The Authors. Current Protocols published by Wiley Periodicals LLC.

Références

Abdinejad, A., Fisher, A. M., & Kumar, S. (1981). Production and utilization of Butyryl-Coa by fatty-acid synthetase from mammalian-tissues. Archives of Biochemistry and Biophysics, 208(1), 135-145. https://doi.org/10.1016/0003-9861(81)90132-6
Abu-Zhayia, E. R., Machour, F. E., & Ayoub, N. (2019). HDAC-dependent decrease in histone crotonylation during DNA damage. Journal of Molecular Cell Biology, 11(9), 804-806. https://doi.org/10.1093/jmcb/mjz019
Allfrey, V. G., Faulkner, R., & Mirsky, A. E. (1964). Acetylation and methylation of histones and their possible role in the regulation of Rna synthesis. Proceedings of the National Academy of Sciences of the United States of America, 51, 786-794.
Andresen, B. S., Christensen, E., Corydon, T. J., Bross, P., Pilgaard, B., Wanders, R. J., Ruiter, J. P., Simonsen, H., Winter, V., Knudsen, I., Schroeder, L. D., Gregersen, N., & Skovby, F. (2000). Isolated 2-methylbutyrylglycinuria caused by short/branched-chain acyl-CoA dehydrogenase deficiency: Identification of a new enzyme defect, resolution of its molecular basis, and evidence for distinct acyl-CoA dehydrogenases in isoleucine and valine metabolism. American Journal of Human Genetics, 67(5), 1095-1103. https://doi.org/10.1086/303105
Andrews, F. H., Shinsky, S. A., Shanle, E. K., Bridgers, J. B., Gest, A., Tsun, I. K., Krajewski, K., Shi, X., Strahl, B. D., & Kutateladze, T. G. (2016). The Taf14 YEATS domain is a reader of histone crotonylation. Nature Chemical Biology, 12(6), 396-U333. https://doi.org/10.1038/nchembio.2065
Andrews, F. H., Strahl, B. D., & Kutateladze, T. G. (2016). Insights into newly discovered marks and readers of epigenetic information. Nature Chemical Biology, 12(9), 662-668. https://doi.org/10.1038/nchembio.2149
Avvakumov, N., & Cote, J. (2007). The MYST family of histone acetyltransferases and their intimate links to cancer. Oncogene, 26(37), 5395-5407.
Baldensperger, T., & Glomb, M. A. (2021). Pathways of non-enzymatic lysine acylation. Frontiers in Cell and Developmental Biology, 9, 664553. https://doi.org/10.3389/fcell.2021.664553
Bao, X. C., Wang, Y., Li, X., Li, X. M., Liu, Z., Yang, T. P., Wong, C. F., Zhang, J., Hao, Q., & Li, X. D. (2014). Identification of 'erasers' for lysine crotonylated histone marks using a chemical proteomics approach. Elife, 3, e02999.https://doi.org/10.7554/eLife.02999
Barnes, C. E., English, D. M., & Cowley, S. M. (2019). Acetylation & Co: An expanding repertoire of histone acylations regulates chromatin and transcription. Essays in Biochemistry, 63(1), 97-107. https://doi.org/10.1042/EBC20180061
Berndsen, C. E., & Denu, J. M. (2008). Catalysis and substrate selection by histone/protein lysine acetyltransferases. Current Opinion in Structural Biology, 18(6), 682-689.
Bernstein, J., Lott, W. A., Steinberg, B. A., & Yale, H. L. (1952). Chemotherapy of experimental tuberculosis. V. Isonicotinic acid hydrazide (nydrazid) and related compounds. American Review of Tuberculosis, 65(4), 357-364. https://doi.org/10.1164/art.1952.65.4.357
Bhaskar, A., Kumar, S., Khan, M. Z., Singh, A., Dwivedi, V. P., & Nandicoori, V. K. (2020). Host sirtuin 2 as an immunotherapeutic target against tuberculosis. Elife, 9, e55415. https://doi.org/10.7554/eLife.55415
Bhattacharya, A., Chatterjee, S., Bhaduri, U., Singh, A. K., Vasudevan, M., Sashidhara, K. V., Guha, R., Natesh, N., & Kundu, T. K. (2022). EP300 (p300) mediated histone butyrylation is critical for adipogenesis. BioRxiv, 2021.2008.2001.454641. https://doi.org/10.1101/2021.08.01.454641
Broder, G., & Weil, M. H. (1964). Excess lactate: An index of reversibility of shock in human patients. Science, 143(3613), 1457-1459. https://doi.org/10.1126/science.143.3613.1457
Brown, G. K., Hunt, S. M., Scholem, R., Fowler, K., Grimes, A., Mercer, J. F., Truscott, R. M., Cotton, R. G., Rogers, J. G., & Danks, D. M. (1982). Beta-hydroxyisobutyryl coenzyme-a deacylase deficiency - a defect in valine metabolism associated with physical malformations. Pediatrics, 70(4), 532-538.
Brusilow, S. W., Danney, M., Waber, L. J., Batshaw, M., Burton, B., Levitsky, L., Roth, K., Mckeethren, C., & Ward, J. (1984). Treatment of episodic hyperammonemia in children with inborn errors of urea synthesis. New England Journal of Medicine, 310(25), 1630-1634. https://doi.org/10.1056/NEJM198406213102503
Bursten, S. L., Locksley, R. M., Ryan, J. L., & Lovett, D. H. (1988). Acylation of monocyte and glomerular mesangial cell-proteins - Myristyl acylation of the interleukin-1 precursors. Journal of Clinical Investigation, 82(5), 1479-1488. https://doi.org/10.1172/Jci113755
Centers for Disease Control and Prevention (CDC). (2010). Severe isoniazid-associated liver injuries among persons being treated for latent tuberculosis infection - United States, 2004-2008. Mmwr Morbidity and Mortality Weekly Report, 59(8), 224-229.
Chen, Y., Sprung, R., Tang, Y., Ball, H., Sangras, B., Kim, S. C., Falck, J. R., Peng, J., Gu, W., & Zhao, Y. M. (2007). Lysine propionylation and butyrylation are novel post-translational modifications in histones. Molecular & Cellular Proteomics, 6(5), 812-819. https://doi.org/10.1074/mcp.M700021-MCP200
Chriett, S., Dabek, A., Wojtala, M., Vidal, H., Balcerczyk, A., & Pirola, L. (2019). Prominent action of butyrate over beta-hydroxybutyrate as histone deacetylase inhibitor, transcriptional modulator and anti-inflammatory molecule. Scientific Reports, 9(1), 742. https://doi.org/10.1038/s41598-018-36941-9
Cui, H. C., Xie, N., Banerjee, S., Ge, J., Jiang, D. Y., Dey, T., Matthews, Q. L., Liu, R. - M., & Liu, G. (2021). Lung myofibroblasts promote macrophage profibrotic activity through lactate-induced histone lactylation. American Journal of Respiratory Cell and Molecular Biology, 64(1), 115-125. https://doi.org/10.1165/rcmb.2020-0360OC
Cummings, J. H., Pomare, E. W., Branch, W. J., Naylor, C. P. E., & Macfarlane, G. T. (1987). Short chain fatty-acids in human large-intestine, portal, hepatic and venous-blood. Gut, 28(10), 1221-1227. https://doi.org/10.1136/gut.28.10.1221
Dai, L. Z., Peng, C., Montellier, E., Lu, Z. K., Chen, Y., Ishii, H., Debernardi, A., Buchou, T., Rousseaux, S., Jin, F., Sabari, B. R., Deng, Z., Allis, C. D., Ren, B., Khochbin, S., & Zhao, Y. M. (2014). Lysine 2-hydroxyisobutyrylation is a widely distributed active histone mark. Nature Chemical Biology, 10(5), 365-U373. https://doi.org/10.1038/Nchembio.1497
Dancy, B. M., & Cole, P. A. (2015). Protein lysine acetylation by p300/CBP. Chemical Reviews, 115(6), 2419-2452. https://doi.org/10.1021/cr500452k
Delaney, K., Tan, M. J., Zhu, Z. S., Gao, J. J., Dai, L. Z., Kim, S., Ding, J., He, M., Halabelian, L., Yang, L., Nagarajan, P., Parthun, M. R., Lee, S., Khochbin, S., Zheng, Y. G., & Zhao, Y. M. (2021). Histone lysine methacrylation is a dynamic post-translational modification regulated by HAT1 and SIRT2. Cell Discovery, 7(1), https://doi.org/10.1038/s41421-021-00344-4
Deng, M., Tang, Y., Li, W., Wang, X., Zhang, R., Zhang, X., Zhao, X., Liu, J., Tang, C., Liu, Z., Huang, Y., Peng, H., Xiao, L., Tang, D., Scott, M. J., Wang, Q., Liu, J., Xiao, X., Watkins, S., … Lu, B. (2018). The endotoxin delivery protein HMGB1 mediates caspase-11-dependent lethality in sepsis. Immunity, 49(4), 740-753.e747. https://doi.org/10.1016/j.immuni.2018.08.016
Dong, H., Zhang, J., Zhang, H., Han, Y., Lu, C., Chen, C., Tan, X., Wang, S., Bai, X., Zhai, G., Tian, S., Zhang, T., Cheng, Z., Li, E., Xu, L., & Zhang, K. (2022). YiaC and CobB regulate lysine lactylation in Escherichia coli. Nature Communications, 13(1), 6628. https://doi.org/10.1038/s41467-022-34399-y
Feldman, J. L., Baeza, J., & Denu, J. M. (2013). Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. Journal of Biological Chemistry, 288(43), 31350-31356. https://doi.org/10.1074/jbc.C113.511261
Fellows, R., Denizot, J., Stellato, C., Cuomo, A., Jain, P., Stoyanova, E., Balázsi, S., Hajnády, Z., Liebert, A., Kazakevych, J., Blackburn, H., Corrêa, R. O., Fachi, J. L., Sato, F. T., Ribeiro, W. R., Ferreira, C. M., Perée, H., Spagnuolo, M., Mattiuz, R., … Varga-Weisz, P. (2018). Microbiota derived short chain fatty acids promote histone crotonylation in the colon through histone deacetylases. Nature Communications, 9, 105. https://doi.org/10.1038/s41467-017-02651-5
Finkel, T., Deng, C. X., & Mostoslavsky, R. (2009). Recent progress in the biology and physiology of sirtuins. Nature, 460(7255), 587-591. https://doi.org/10.1038/nature08197
Flynn, E. M., Huang, O. W., Poy, F., Oppikofer, M., Bellon, S. F., Tang, Y., & Cochran, A. G. (2015). A subset of human bromodomains recognizes butyryllysine and crotonyllysine histone peptide modifications. Structure (London, England), 23(10), 1801-1814. https://doi.org/10.1016/j.str.2015.08.004
Fu, H. F., Tian, C. L., Ye, X. Y., Sheng, X. Y., Wang, H., Liu, Y. F., & Liu, L. (2018). Dynamics of telomere rejuvenation during chemical induction to pluripotent stem cells. Stem Cell Reports, 11(1), 70-87. https://doi.org/10.1016/j.stemcr.2018.05.003
Gaffney, D. O., Jennings, E. Q., Anderson, C. C., Marentette, J. O., Shi, T., Oxvig, A. M. S., Streeter, M. D., Johannsen, M., Spiegel, D. A., Chapman, E., Roede, J. R., & Galligan, J. J. (2020). Non-enzymatic lysine lactoylation of glycolytic enzymes. Cell Chemical Biology, 27(2), 206-+. https://doi.org/10.1016/j.chembiol.2019.11.005
Gao, M. M., Zhang, N., & Liang, W. X. (2020). Systematic analysis of lysine lactylation in the plant fungal pathogen botrytis cinerea. Frontiers in Microbiology, 11, 594743. https://doi.org/10.3389/fmicb.2020.594743
Gates, L. A., Reis, B. S., Lund, P. J., Paul, M. R., Leboeuf, M., Nadeem, Z., Carroll, T. S., Garcia, B. A., Mucida, D., & Allis, C. D. (2022). Microbiota-dependent histone butyrylation in the mammalian intestine. BioRxiv, 2022.2009.2029.510184. https://doi.org/10.1101/2022.09.29.510184
Goudarzi, A., Hosseinmardi, N., Salami, S., Mehdikhani, F., Derakhshan, S., & Aminishakib, P. (2020). Starvation promotes histone lysine butyrylation in the liver of male but not female mice. Gene, 745, 144647. https://doi.org/10.1016/j.gene.2020.144647
Goudarzi, A., Zhang, D., Huang, H., Barral, S., Kwon, O. K., Qi, S. K., Tang, Z., Buchou, T., Vitte, A. - L., He, T., Cheng, Z., Montellier, E., Gaucher, J., Curtet, S., Debernardi, A., Charbonnier, G., Puthier, D., Petosa, C., Panne, D., … Khochbin, S. (2016). Dynamic competing histone H4 K5K8 acetylation and butyrylation are hallmarks of highly active gene promoters. Molecular Cell, 62(2), 169-180. https://doi.org/10.1016/j.molcel.2016.03.014
Gowans, G. J., Bridgers, J. B., Zhang, J., Dronamraju, R., Burnetti, A., King, D. A., Thiengmany, A. V., Shinsky, S. A., Bhanu, N. V., Garcia, B. A., Buchler, N. E., Strahl, B. D., & Morrison, A. J. (2019). Recognition of histone crotonylation by Taf14 links metabolic state to gene expression. Molecular Cell, 76(6), 909-+. https://doi.org/10.1016/j.molcel.2019.09.029
Grammel, M., & Hang, H. C. (2013). Chemical reporters for biological discovery. Nature Chemical Biology, 9(8), 475-484. https://doi.org/10.1038/nchembio.1296
Gruber, J. J., Geller, B., Lipchik, A. M., Chen, J., Salahudeen, A. A., Ram, A. N., Ford, J. M., Kuo, C. J., & Snyder, M. P. (2019). HAT1 coordinates histone production and acetylation via H4 promoter binding. Molecular Cell, 75(4), 711-+. https://doi.org/10.1016/j.molcel.2019.05.034
Gu, W., Shi, X. L., & Roeder, R. G. (1997). Synergistic activation of transcription by CBP and p53. Nature, 387(6635), 819-823.
Haberland, M., Montgomery, R. L., & Olson, E. N. (2009). The many roles of histone deacetylases in development and physiology: Implications for disease and therapy. Nature Reviews Genetics, 10(1), 32-42. https://doi.org/10.1038/nrg2485
Hagihara, H., Shoji, H., Otabi, H., Toyoda, A., Katoh, K., Namihira, M., & Miyakawa, T. (2021). Protein lactylation induced by neural excitation. Cell Reports, 37(2), 109820. https://doi.org/10.1016/j.celrep.2021.109820
He, M., Han, Z., Liu, L., & Zheng, Y. G. (2018). Chemical biology approaches for investigating the functions of lysine acetyltransferases. Angewandte Chemie, 57(5), 1162-1184. https://doi.org/10.1002/anie.201704745
Head, P. E., Myung, S., Chen, Y., Schneller, J. L., Wang, C., Duncan, N., Hoffman, P., Chang, D., Gebremariam, A., Gucek, M., Manoli, I., & Venditti, C. P. (2022). Aberrant methylmalonylation underlies methylmalonic acidemia and is attenuated by an engineered sirtuin. Science Translational Medicine, 14(646), eabn4772. https://doi.org/10.1126/scitranslmed.abn4772
Hildmann, C., Riester, D., & Schwienhorst, A. (2007). Histone deacetylases-an important class of cellular regulators with a variety of functions. Applied Microbiology and Biotechnology, 75(3), 487-497.
Houten, S. M., Violante, S., Ventura, F. V., & Wanders, R. J. (2016). The biochemistry and physiology of mitochondrial fatty acid beta-oxidation and its genetic disorders. Annual Review of Physiology, 78, 23-44. https://doi.org/10.1146/annurev-physiol-021115-105045
Huang, H., Lin, S., Garcia, B. A., & Zhao, Y. (2015). Quantitative proteomic analysis of histone modifications. Chemical Reviews, 115(6), 2376-2418. https://doi.org/10.1021/cr500491u
Huang, H., Tang, S., Ji, M., Tang, Z. Y., Shimada, M., Liu, X. J., Qi, S., Locasale, J. W., Roeder, R. G., Zhao, Y., & Li, X. L. (2018). p300-Mediated lysine 2-hydroxyisobutyrylation regulates glycolysis (vol 70, pg 663, 2018). Molecular Cell, 70(5), 984-984. https://doi.org/10.1016/j.molcel.2018.05.035
Huang, H., Zhang, D., Wang, Y., Perez-Neut, M., Han, Z., Zheng, Y. G., Hao, Q., & Zhao, Y. (2018). Lysine benzoylation is a histone mark regulated by SIRT2. Nature Communications, 9, 3374. https://doi.org/10.1038/s41467-018-05567-w
Irizarry-Caro, R. A., McDaniel, M. M., Overcast, G. R., Jain, V. G., Troutman, T. D., & Pasare, C. (2020). TLR signaling adapter BCAP regulates inflammatory to reparatory macrophage transition by promoting histone lactylation. Proceedings of the National Academy of Sciences of the United States of America, 117(48), 30628-30638. https://doi.org/10.1073/pnas.2009778117
Jennings, E. Q., Ray, J. D., Zerio, C. J., Trujillo, M. N., Mcdonald, D. M., Chapman, E., Spiegel, D. A., & Galligan, J. J. (2021). Sirtuin 2 regulates protein LactoylLys modifications. Chembiochem, 22(12), 2102-2106. https://doi.org/10.1002/cbic.202000883
Jiang, G., Nguyen, D., Archin, N. M., Yukl, S. A., Méndez-Lagares, G., Tang, Y., Elsheikh, M., Thompson, G. R., Hartigan-O'connor, D. J., Margolis, D. M., Wong, J. K., … Dandekar, S. (2018). HIV latency is reversed by ACSS2-driven histone crotonylation. Journal of Clinical Investigation, 128(3), 1190-1198. https://doi.org/10.1172/Jci98071
Jiang, J., Huang, D., Jiang, Y., Hou, J., Tian, M., Li, J., Sun, L., Zhang, Y., Zhang, T., Li, Z., Li, Z., Tong, S., & Ma, Y. (2021). Lactate modulates cellular metabolism through histone lactylation-mediated gene expression in non-small cell lung cancer. Frontiers in Oncology, 11, 647559. https://doi.org/10.3389/fonc.2021.647559
Jiang, T., Zhou, X., Taghizadeh, K., Dong, M., & Dedon, P. C. (2007). N-formylation of lysine in histone proteins as a secondary modification arising from oxidative DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 104(1), 60-65.
Jiang, Y., Li, Y., Liu, C., Zhang, L., Lv, D., Weng, Y., Cheng, Z., Chen, X., Zhan, J., & Zhang, H. (2021). Isonicotinylation is a histone mark induced by the anti-tuberculosis first-line drug isoniazid. Nature Communications, 12(1), 5548. https://doi.org/10.1038/s41467-021-25867-y
Kaczmarska, Z., Ortega, E., Goudarzi, A., Huang, H., Kim, S., Márquez, J. A., Zhao, Y., Khochbin, S., & Panne, D. (2017). Structure of p300 in complex with acyl-CoA variants. Nature Chemical Biology, 13(1), 21-29. https://doi.org/10.1038/Nchembio.2217
Kebede, A. F., Nieborak, A., Shahidian, L. Z., Le Gras, S., Richter, F., Gomez, D. A., Baltissen, M. P., Meszaros, G., de Fatima Magliarelli, H., Taudt, A., Margueron, R., Colomé-Tatché, M., Ricci, R., Daujat, S., Vermeulen, M., Mittler, G., & Schneider, R. (2017). Histone propionylation is a mark of active chromatin. Nature Structural & Molecular Biology, 24(12), 1048-+. https://doi.org/10.1038/nsmb.3490
Kim, C. H., Kang, M., Kim, H. J., Chatterjee, A., & Schultz, P. G. (2012). Site-specific incorporation of epsilon-N-crotonyllysine into histones. Angewandte Chemie (International ed in English), 51(29), 7246-7249. https://doi.org/10.1002/anie.201203349
Kim, G. W., & Yang, X. J. (2011). Comprehensive lysine acetylomes emerging from bacteria to humans. Trends in Biochemical Sciences, 36(4), 211-220. https://doi.org/10.1016/j.tibs.2010.10.001
Kim, S. C., Sprung, R., Chen, Y., Xu, Y., Ball, H., Pei, J., Cheng, T., Kho, Y., Xiao, H., Xiao, L., Grishin, N. V., White, M., Yang, X. - J., & Zhao, Y. (2006). Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Molecular Cell, 23(4), 607-618. https://doi.org/10.1016/j.molcel.2006.06.026
Kimura, A., Matsubara, K., & Horikoshi, M. (2005). A decade of histone acetylation: Marking eukaryotic chromosomes with specific codes. Journal of Biochemistry, 138(6), 647-662. https://doi.org/10.1093/jb/mvi184
Klein, B. J., Jang, S. M., Lachance, C., Mi, W. Y., Lyu, J., Sakuraba, S., Krajewski, K., Wang, W. W., Sidoli, S., Liu, J., Zhang, Y., Wang, X., Warfield, B. M., Kueh, A. J., Voss, A. K., Thomas, T., Garcia, B. A., Liu, W. R., Strahl, B. D., … Kutateladze, T. G. (2019). Histone H3K23-specific acetylation by MORF is coupled to H3K14 acylation. Nature Communications, 10, 4724. https://doi.org/10.1038/s41467-019-12551-5
Kollenstart, L., De Groot, A. J. L., Janssen, G. M. C., Cheng, X., Vreeken, K., Martino, F., Côté, J., Van Veelen, P. A., … Van Attikum, H. (2019). Gcn5 and Esa1 function as histone crotonyltransferases to regulate crotonylation-dependent transcription. Journal of Biological Chemistry, 294(52), 20122-20134. https://doi.org/10.1074/jbc.RA119.010302
Kopytko, P., Piotrowska, K., Janisiak, J., & Tarnowski, M. (2021). Garcinol-A Natural Histone Acetyltransferase Inhibitor and New Anti-Cancer Epigenetic Drug. International Journal of Molecular Sciences, 22(6), 2828. https://doi.org/10.3390/ijms22062828
Kouzarides, T. (2007). Chromatin modifications and their function. Cell, 128(4), 693-705. https://doi.org/10.1016/j.cell.2007.02.005
L'Hernault, S. W., & Rosenbaum, J. L. (1985). Chlamydomonas alpha-tubulin is posttranslationally modified by acetylation on the epsilon-amino group of a lysine. Biochemistry, 24(2), 473-478. https://doi.org/10.1021/bi00323a034
Lewis, J. D., Lee, A., Ma, W., Zhou, H., Guttman, D. S., & Desveaux, D. (2011). The YopJ superfamily in plant-associated bacteria. Molecular Plant Pathology, 12(9), 928-937. https://doi.org/10.1111/j.1364-3703.2011.00719.x
Li, F., Wang, P., Liu, K., Tarrago, M. G., Lu, J., Chini, E. N., & Ma, X. (2016). A high dose of isoniazid disturbs endobiotic homeostasis in mouse liver. Drug Metabolism and Disposition, 44(11), 1742-1751. https://doi.org/10.1124/dmd.116.070920
Li, L., Chen, K., Wang, T., Wu, Y., Xing, G., Chen, M., Hao, Z., Zhang, C., Zhang, J., Ma, B., Liu, Z., Yuan, H., Liu, Z., Long, Q., Zhou, Y., Qi, J., Zhao, D., Gao, M., Pei, D., … Liu, X. (2020). Glis1 facilitates induction of pluripotency via an epigenome-metabolome-epigenome signalling cascade. Nature Metabolism, 2(9), 882-892. https://doi.org/10.1038/s42255-020-0267-9
Li, X. L., Yang, Y. Y., Zhang, B., Lin, X. T., Fu, X. X., An, Y., Zou, Y., Wang, J. - X., Wang, Z., & Yu, T. (2022). Lactate metabolism in human health and disease. Signal Transduction and Targeted Therapy, 7(1), 305. https://doi.org/10.1038/s41392-022-01151-3
Li, Y., Sabari, B. R., Panchenko, T., Wen, H., Zhao, D., Guan, H., Wan, L., Huang, H., Tang, Z., Zhao, Y., Roeder, R. G., Shi, X., Allis, C. D., & Li, H. (2016). Molecular coupling of histone crotonylation and active transcription by AF9 YEATS domain. Molecular Cell, 62(2), 181-193. https://doi.org/10.1016/j.molcel.2016.03.028
Liberti, M. V., & Locasale, J. W. (2016). The warburg effect: How does it benefit cancer cells? (vol 41, pg 211, 2016). Trends in Biochemical Sciences, 41(3), 287-287. https://doi.org/10.1016/j.tibs.2016.01.004
Liberti, M. V., & Locasale, J. W. (2020). Histone Lactylation: A New Role for Glucose Metabolism. Trends in Biochemical Sciences, 45(3), 179-+. https://doi.org/10.1016/j.tibs.2019.12.004
Lin, Y., Peng, W., Jiang, M., Lin, C., Lin, W., Zheng, Z., Li, M., & Fu, Q. (2018). Clinical, biochemical and genetic analysis of Chinese patients with isobutyryl-CoA dehydrogenase deficiency. Clinica Chimica Acta, 487, 133-138. https://doi.org/10.1016/j.cca.2018.09.033
Liu, S., Yu, H., Liu, Y., Liu, X., Zhang, Y., Bu, C., Yuan, S., Chen, Z., Xie, G., Li, W., Xu, B., Yang, J., He, L., Jin, T., Xiong, Y., Sun, L., Liu, X., Han, C., Cheng, Z., … Shang, Y. (2017). Chromodomain protein CDYL acts as a Crotonyl-CoA hydratase to regulate histone crotonylation and spermatogenesis. Molecular Cell, 67(5), 853-+. https://doi.org/10.1016/j.molcel.2017.07.011
Liu, X., Wang, L., Zhao, K. H., Thompson, P. R., Hwang, Y., Marmorstein, R., & Cole, P. A. (2008). The structural basis of protein acetylation by the p300/CBP transcriptional coactivator. Nature, 451(7180), 846-850. https://doi.org/10.1038/nature06546
Liu, X., Wei, W., Liu, Y., Yang, X., Wu, J., Zhang, Y., Zhang, Q., Shi, T., Du, J. X., Zhao, Y., Lei, M., Zhou, J. - Q., Li, J., & Wong, J. (2017). MOF as an evolutionarily conserved histone crotonyltransferase and transcriptional activation by histone acetyltransferase-deficient and crotonyltransferase-competent CBP/p300. Cell Discovery, 3, 17016. https://doi.org/10.1038/celldisc.2017.16
Liu, Y., Li, M., Fan, M., Song, Y., Yu, H., Zhi, X., Xiao, K., Lai, S., Zhang, J., Jin, X., Shang, Y., Liang, J., & Huang, Z. (2019). Chromodomain Y-like protein-mediated histone crotonylation regulates stress-induced depressive behaviors. Biological Psychiatry, 85(8), 635-649. https://doi.org/10.1016/j.biopsych.2018.11.025
Loupatty, F. J., Clayton, P. T., Ruiter, J. P. N., Ofman, R., Ijlst, L., Brown, G. K., Thorburn, D. R., Harris, R. A., Duran, M., Desousa, C., Krywawych, S., Heales, S. J. R., & Wanders, R. J. A. (2007). Mutations in the gene encoding 3-hydroxyisobutyryl-CoA hydrolase results in progressive infantile neurodegeneration. American Journal of Human Genetics, 80(1), 195-199. https://doi.org/10.1086/510725
Ma, K. W., & Ma, W. (2016). YopJ family effectors promote bacterial infection through a unique acetyltransferase activity. Microbiology and Molecular Biology Reviews, 80(4), 1011-1027. https://doi.org/10.1128/MMBR.00032-16
Marin, T. L., Gongol, B., Zhang, F., Martin, M., Johnson, D. A., Xiao, H., Wang, Y., Subramaniam, S., Chien, S., & Shyy, J. Y. - J. (2017). AMPK promotes mitochondrial biogenesis and function by phosphorylating the epigenetic factors DNMT1, RBBP7, and HAT1. Science Signaling, 10(464), eaaf7478. https://doi.org/10.1126/scisignal.aaf7478
Marsh, V. L., Peak-Chew, S. Y., & Bell, S. D. (2005). Sir2 and the acetyltransferase, Pat, regulate the archaeal chromatin protein, Alba. Journal of Biological Chemistry, 280(22), 21122-21128. https://doi.org/10.1074/jbc.M501280200
Meng, L., Chan, W. S., Huang, L., Liu, L., Chen, X., Zhang, W., Wang, F., Cheng, K., Sun, H., & Wong, K. C. (2022). Mini-review: Recent advances in post-translational modification site prediction based on deep learning. Computational and Structural Biotechnology Journal, 20, 3522-3532. https://doi.org/10.1016/j.csbj.2022.06.045
Meng, X. X., Baine, J. M., Yan, T. C., & Wang, S. (2021). Comprehensive analysis of lysine lactylation in rice (Oryza sativa) grains. Journal of Agricultural and Food Chemistry, 69(29), 8287-8297. https://doi.org/10.1021/acs.jafc.1c00760
Moreno-Yruela, C., Galleano, I., Madsen, A. S., & Olsen, C. A. (2018). Histone deacetylase 11 is an epsilon-N-myristoyllysine hydrolase. Cell Chemical Biology, 25(7), 849-856.e848. https://doi.org/10.1016/j.chembiol.2018.04.007
Moreno-Yruela, C., Zhang, D., Wei, W., Baek, M., Liu, W. C., Gao, J. J., Danková, D., Nielsen, A. L., Bolding, J. E., Yang, L., Jameson, S. T., Wong, J., Olsen, C. A., & Zhao, Y. M. (2022). Class I histone deacetylases (HDAC1-3) are histone lysine delactylases. Science Advances, 8(3), https://doi.org/10.1126/sciadv.abi6696
Nagarajan, P., Garcia, P. A. A., Iyer, C. C., Popova, L. V., Arnold, W. D., & Parthun, M. R. (2019). Early-onset aging and mitochondrial defects associated with loss of histone acetyltransferase 1 (Hat1). Aging Cell, 18(5), e12992. https://doi.org/10.1111/acel.12992
Neumann, H., Peak-Chew, S. Y., & Chin, J. W. (2008). Genetically encoding N(epsilon)-acetyllysine in recombinant proteins. Nature Chemical Biology, 4(4), 232-234. https://doi.org/10.1038/nchembio.73
Nguyen, T. V., Andresen, B. S., Corydon, T. J., Ghisla, S., Razik, N. A. E., Mohsen, A. W. A., Cederbaum, S. D., Roe, D. S., Roe, C. R., Lench, N. J., & Vockley, J. (2002). Identification of isobutyryl-CoA dehydrogenase and its deficiency in humans. Molecular Genetics and Metabolism, 77(1-2), 68-79. https://doi.org/10.1016/S1096-7192(02)00152-X
Nie, L. T., Shuai, L., Zhu, M. R., Liu, P., Xie, Z. F., Jiang, S. W., Jiang, H. - W., Li, J., Zhao, Y., Li, J. - Y., & Tan, M. J. (2017). The landscape of histone modifications in a high-fat diet-induced obese (DIO) mouse model. Molecular & Cellular Proteomics, 16(7), 1324-1334. https://doi.org/10.1074/mcp.M117.067553
Ntorla, A., & Burgoyne, J. R. (2021). The regulation and function of histone crotonylation. Frontiers in Cell and Developmental Biology, 9, 624914. https://doi.org/10.3389/fcell.2021.624914
Ott, M., Schnolzer, M., Garnica, J., Fischle, W., Emiliani, S., Rackwitz, H. R., & Verdin, E. (1999). Acetylation of the HIV-1 Tat protein by p300 is important for its transcriptional activity. Current Biology, 9(24), 1489-1492.
Palsson-McDermott, E. M., & O'Neill, L. A. J. (2013). The Warburg effect then and now: From cancer to inflammatory diseases. BioEssays, 35(11), 965-973. https://doi.org/10.1002/bies.201300084
Pan, R. Y., He, L., Zhang, J., Liu, X. H., Liao, Y. J., Gao, J., Liao, Y., Yan, Y., Li, Q., Zhou, X., Cheng, J., Xing, Q., Guan, F., Zhang, J., Sun, L., & Yuan, Z. Q. (2022). Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer's disease. Cell Metabolism, 34(4), 634-+. https://doi.org/10.1016/j.cmet.2022.02.013
Park, H. W., Park, E. H., Yun, H. M., & Rhim, H. (2011). Sodium benzoate-mediated cytotoxicity in mammalian cells. Journal of Food Biochemistry, 35(4), 1034-1046. https://doi.org/10.1111/j.1745-4514.2010.00432.x
Parker, C. G., & Pratt, M. R. (2020). Click chemistry in proteomic investigations. Cell, 180(4), 605-632. https://doi.org/10.1016/j.cell.2020.01.025
Pavlova, N. N., & Thompson, C. B. (2016). The emerging hallmarks of cancer metabolism. Cell Metabolism, 23(1), 27-47. https://doi.org/10.1016/j.cmet.2015.12.006
Peng, C., Lu, Z. K., Xie, Z. Y., Cheng, Z. Y., Chen, Y., Tan, M. J., Luo, H., Zhang, Y., He, W., Yang, K., Zwaans, B. M. M., Tishkoff, D., Ho, L., Lombard, D., He, T. - C., Dai, J., Verdin, E., Ye, Y., & Zhao, Y. M. (2011). The first identification of lysine malonylation substrates and its regulatory enzyme. Molecular & Cellular Proteomics, 10(12), M111.012658. https://doi.org/10.1074/mcp.M111.012658
Peters, H., Buck, N., Wanders, R., Ruiter, J., Waterham, H., Koster, J., Yaplito-Lee, J., Ferdinandusse, S., & Pitt, J. (2014). ECHS1 mutations in Leigh disease: A new inborn error of metabolism affecting valine metabolism. Brain, 137, 2903-2908. https://doi.org/10.1093/brain/awu216
Phillips, D. M. (1963). The presence of acetyl groups of histones. Biochemical Journal, 87, 258-263.
Pongsavee, M. (2015). Effect of sodium benzoate preservative on micronucleus induction, chromosome break, and Ala40Thr superoxide dismutase gene mutation in lymphocytes. BioMed Research International, 2015, 103512. https://doi.org/10.1155/2015/103512
Pougovkina, O., te Brinke, H., Wanders, R. J. A., Houten, S. M., & de Boer, V. C. J. (2014). Aberrant protein acylation is a common observation in inborn errors of acyl-CoA metabolism. Journal of Inherited Metabolic Disease, 37(5), 709-714. https://doi.org/10.1007/s10545-014-9684-9
Praphanproj, V., Boyadjiev, S. A., Waber, L. J., Brusilow, S. W., & Geraghty, M. T. (2000). Three cases of intravenous sodium benzoate and sodium phenylacetate toxicity occurring in the treatment of acute hyperammonaemia. Journal of Inherited Metabolic Disease, 23(2), 129-136. https://doi.org/10.1023/A:1005661631281
Prescher, J. A., & Bertozzi, C. R. (2005). Chemistry in living systems. Nature Chemical Biology, 1(1), 13-21. https://doi.org/10.1038/nchembio0605-13
Ran-Ressler, R. R., Bae, S., Lawrence, P., Wang, D. H., & Brenna, J. T. (2014). Branched-chain fatty acid content of foods and estimated intake in the USA. British Journal of Nutrition, 112(4), 565-572. https://doi.org/10.1017/S0007114514001081
Ren, X., Zhou, Y., Xue, Z., Hao, N., Li, Y., Guo, X., Wang, D., Shi, X., & Li, H. (2021). Histone benzoylation serves as an epigenetic mark for DPF and YEATS family proteins. Nucleic Acids Research, 49(1), 114-126. https://doi.org/10.1093/nar/gkaa1130
Robinson, W. G., Nagle, R., Bachhawat, B. K., Kupiecki, F. P., & Coon, M. J. (1957). Coenzyme-a thiol esters of isobutyric, methacrylic, and beta-hydroxyisobutyric acids as intermediates in the enzymatic degradation of valine. Journal of Biological Chemistry, 224(1), 1-11.
Ruiz-Andres, O., Sanchez-Nino, M. D., Cannata-Ortiz, P., Ruiz-Ortega, M., Egido, J., Ortiz, A., & Sanz, A. B. (2016). Histone lysine crotonylation during acute kidney injury in mice. Disease Models & Mechanisms, 9(6), 633-645. https://doi.org/10.1242/dmm.024455
Ruthenburg, A. J., Li, H., Patel, D. J., & Allis, C. D. (2007). Multivalent engagement of chromatin modifications by linked binding modules. Nature Reviews Molecular Cell Biology, 8(12), 983-994. https://doi.org/10.1038/nrm2298
Sabari, B. R., Tang, Z., Huang, H., Yong-Gonzalez, V., Molina, H., Kong, H. E., Dai, L., Shimada, M., Cross, J. R., Zhao, Y., Roeder, R. G., & Allis, C. D. (2015). Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation. Molecular Cell, 58(2), 203-215. https://doi.org/10.1016/j.molcel.2015.02.029
Sabari, B. R., Zhang, D., Allis, C. D., & Zhao, Y. M. (2017). Metabolic regulation of gene expression through histone acylations. Nature Reviews Molecular Cell Biology, 18(2), 90-101. https://doi.org/10.1038/nrm.2016.140
Sapountzi, V., & Cote, J. (2011). MYST-family histone acetyltransferases: Beyond chromatin. Cellular and Molecular Life Sciences, 68(7), 1147-1156. https://doi.org/10.1007/s00018-010-0599-9
Serrano, L., Martinez-Redondo, P., Marazuela-Duque, A., Vazquez, B. N., Dooley, S. J., Voigt, P., Beck, D. B., Kane-Goldsmith, N., Tong, Q., Rabanal, R. M., Fondevila, D., Muñoz, P., Krüger, M., Tischfield, J. A., & Vaquero, A. (2013). The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation. Genes & Development, 27(6), 639-653. https://doi.org/10.1101/gad.211342.112
Shang, S., Liu, J., & Hua, F. (2022). Protein acylation: Mechanisms, biological functions and therapeutic targets. Signal Transduction and Targeted Therapy, 7(1), 396. https://doi.org/10.1038/s41392-022-01245-y
Simithy, J., Sidoli, S., Yuan, Z. F., Coradin, M., Bhanu, N. V., Marchione, D. M., Klein, B. J., Bazilevsky, G. A., McCullough, C. E., Magin, R. S., Kutateladze, T. G., Snyder, N. W., Marmorstein, R., & Garcia, B. A. (2017). Characterization of histone acylations links chromatin modifications with metabolism. Nature Communications, 8, 1141. https://doi.org/10.1038/s41467-017-01384-9
Simon, R. P., Robaa, D., Alhalabi, Z., Sippl, W., & Jung, M. (2016). KATching-up on small molecule modulators of lysine acetyltransferases. Journal of Medicinal Chemistry, 59(4), 1249-1270. https://doi.org/10.1021/acs.jmedchem.5b01502
Sletten, E. M., & Bertozzi, C. R. (2009). Bioorthogonal chemistry: Fishing for selectivity in a sea of functionality. Angewandte Chemie-International Edition, 48(38), 6974-6998. https://doi.org/10.1002/anie.200900942
Smith, B. C., & Denu, J. M. (2007). Acetyl-lysine analog peptides as mechanistic probes of protein deacetylases. Journal of Biological Chemistry, 282(51), 37256-37265. https://doi.org/10.1074/jbc.M707878200
Song, J., Han, Z., & Zheng, Y. G. (2022). Identification and profiling of histone acetyltransferase substrates by bioorthogonal labeling. Current Protocols, 2(7), e497. https://doi.org/10.1002/cpz1.497
Song, J., & Zheng, Y. G. (2020). Bioorthogonal reporters for detecting and profiling protein acetylation and acylation. SLAS Discovery, 25(2), 148-162. https://doi.org/10.1177/2472555219887144
Soufi, B., Soares, N. C., Ravikumar, V., & Macek, B. (2012). Proteomics reveals evidence of cross-talk between protein modifications in bacteria: Focus on acetylation and phosphorylation. Current Opinion in Microbiology, 15(3), 357-363. https://doi.org/10.1016/j.mib.2012.05.003
Starai, V. J., Celic, I., Cole, R. N., Boeke, J. D., & Escalante-Semerena, J. C. (2002). Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science, 298(5602), 2390-2392. https://doi.org/10.1126/science.1077650
Starai, V. J., & Escalante-Semerena, J. C. (2004). Identification of the protein acetyltransferase (Pat) enzyme that acetylates acetyl-CoA synthetase in Salmonella enterica. Journal of Molecular Biology, 340(5), 1005-1012. https://doi.org/10.1016/j.jmb.2004.05.010
Sun, S. Y., Xu, X. X., Liang, L., Wang, X. L., Bai, X., Zhu, L. P., He, Q., Liang, H., Xin, X., Wang, L., Lou, C., Cao, X., Chen, X., Li, B., Wang, B., & Zhao, J. W. (2021). Lactic acid-producing probiotic saccharomyces cerevisiae attenuates ulcerative colitis via suppressing macrophage pyroptosis and modulating gut microbiota. Frontiers in Immunology, 12, 777665. https://doi.org/10.3389/fimmu.2021.777665
Sun, Y. A., Chen, Y. C., & Peng, T. (2022). A bioorthogonal chemical reporter for the detection and identification of protein lactylation. Chemical Science, 13(20), 6019-6027. https://doi.org/10.1039/d2sc00918h
Sunden-Cullberg, J., Norrby-Teglund, A., Rouhiainen, A., Rauvala, H., Herman, G., Tracey, K. J., Lee, M. L., Andersson, J., Tokics, L., & Treutiger, C. J. (2005). Persistent elevation of high mobility group box-1 protein (HMGB1) in patients with severe sepsis and septic shock. Critical Care Medicine, 33(3), 564-573. https://doi.org/10.1097/01.ccm.0000155991.88802.4d
Szende, B., Juhasz, J., & Kendrey, G. (1967). [Electronmicroscopic studies on INH-induced liver changes and liver tumors in white rats]. Gegenbaurs Morphologisches Jahrbuch, 111(2), 216-224.
Tan, D., Wei, W., Han, Z., Ren, X., Yan, C., Qi, S., Song, X., Zheng, Y. G., Wong, J., & Huang, H. (2022). HBO1 catalyzes lysine benzoylation in mammalian cells. iScience, 25(11), 105443. https://doi.org/10.1016/j.isci.2022.105443
Tan, M., Luo, H., Lee, S., Jin, F., Yang, J. S., Montellier, E., Buchou, T., Cheng, Z., Rousseaux, S., Rajagopal, N., Lu, Z., Ye, Z., Zhu, Q., Wysocka, J., Ye, Y., Khochbin, S., Ren, B., & Zhao, Y. (2011). Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell, 146(6), 1016-1028. https://doi.org/10.1016/j.cell.2011.08.008
Tan, M., Peng, C., Anderson, K. A., Chhoy, P., Xie, Z., Dai, L., Park, J., Chen, Y., Huang, H., Zhang, Y., Ro, J., Wagner, G. R., Green, M. F., Madsen, A. S., Schmiesing, J., Peterson, B. S., Xu, G., Ilkayeva, O. R., Muehlbauer, M. J., … Zhao, Y. (2014). Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metabolism, 19(4), 605-617. https://doi.org/10.1016/j.cmet.2014.03.014
Tian, H., Yang, J., Guo, A. - D., Ran, Y., Yang, Y. - Z., Yang, B., Huang, R., Liu, H., & Chen, X. - H. (2021). Genetically encoded benzoyllysines serve as versatile probes for interrogating histone benzoylation and interactions in living cells. Acs Chemical Biology, 16(11), 2560-2569. https://doi.org/10.1021/acschembio.1c00614
Trefely, S., Lovell, C. D., Snyder, N. W., & Wellen, K. E. (2020). Compartmentalised acyl-CoA metabolism and roles in chromatin regulation. Molecular Metabolism, 38, 100941. https://doi.org/10.1016/j.molmet.2020.01.005
Ud-Din, A. I. M. S., Tikhomirova, A., & Roujeinikova, A. (2016). Structure and functional diversity of GCN5-related N-acetyltransferases (GNAT). International Journal of Molecular Sciences, 17(7), 1018. https://doi.org/10.3390/ijms17071018
Varner, E. L., Trefely, S., Bartee, D., Von Krusenstiern, E., Izzo, L., Bekeova, C., O'connor, R. S., Seifert, E. L., Wellen, K. E., Meier, J. L., & Snyder, N. W. (2020). Quantification of lactoyl-CoA (lactyl-CoA) by liquid chromatography mass spectrometry in mammalian cells and tissues. Open Biology, 10(9), 200187. https://doi.org/10.1098/rsob.200187
Verdin, E., & Ott, M. (2015). 50 years of protein acetylation: From gene regulation to epigenetics, metabolism and beyond. Nature Reviews Molecular Cell Biology, 16(4), 258-264. https://doi.org/10.1038/nrm3931
Vetting, M. W., LP, S. d. C., Yu, M., Hegde, S. S., Magnet, S., Roderick, S. L., & Blanchard, J. S. (2005). Structure and functions of the GNAT superfamily of acetyltransferases. Archives of Biochemistry and Biophysics, 433(1), 212-226. https://doi.org/10.1016/j.abb.2004.09.003
Violante, S., Ijlst, L., Ruiter, J., Koster, J., van Lenthe, H., Duran, M., de Almeida, I. T., Wanders, R. J. A., Houten, S. M., & Ventura, F. V. (2013). Substrate specificity of human carnitine acetyltransferase: Implications for fatty acid and branched-chain amino acid metabolism. Biochimica Et Biophysica Acta-Molecular Basis of Disease, 1832(6), 773-779. https://doi.org/10.1016/j.bbadis.2013.02.012
Voss, A. K., & Thomas, T. (2009). MYST family histone acetyltransferases take center stage in stem cells and development. BioEssays, 31(10), 1050-1061. https://doi.org/10.1002/bies.200900051
Wagner, G. R., Bhatt, D. P., O'Connell, T. M., Thompson, J. W., Dubois, L. G., Backos, D. S., Yang, H., Mitchell, G. A., Ilkayeva, O. R., Stevens, R. D., Grimsrud, P. A., & Hirschey, M. D. (2017). A class of reactive acyl-CoA species reveals the non-enzymatic origins of protein acylation. Cell Metabolism, 25(4), 823-+. https://doi.org/10.1016/j.cmet.2017.03.006
Wang, D., Yan, F., Wu, P., Ge, K., Li, M., Li, T., Gao, Y., Peng, C., … Chen, Y. (2022). Global profiling of regulatory elements in the histone benzoylation pathway. Nature Communications, 13(1), 1369. https://doi.org/10.1038/s41467-022-29057-2
Wang, M., & Lin, H. N. (2021). Understanding the Function of Mammalian Sirtuins and Protein Lysine Acylation. Annual Review of Biochemistry, 90, 245-285. https://doi.org/10.1146/annurev-biochem-082520-125411
Wang, Z. A., Whedon, S. D., Wu, M., Wang, S., Brown, E. A., Anmangandla, A., Regan, L., Lee, K., Du, J., Hong, J. Y., Fairall, L., Kay, T., Lin, H., Zhao, Y., Schwabe, J. W. R., & Cole, P. A. (2022). Histone H2B deacylation selectivity: Exploring Chromatin's dark matter with an engineered sortase. Journal of the American Chemical Society, 144(8), 3360-3364. https://doi.org/10.1021/jacs.1c13555
Wei, W., Liu, X., Chen, J., Gao, S., Lu, L., Zhang, H., Ding, G., Wang, Z., Chen, Z., Shi, T., Li, J., Yu, J., & Wong, J. (2017). Class I histone deacetylases are major histone decrotonylases: Evidence for critical and broad function of histone crotonylation in transcription. Cell Research, 27(7), 898-915. https://doi.org/10.1038/cr.2017.68
Xiao, H., Xuan, W., Shao, S., Liu, T., & Schultz, P. G. (2015). Genetic incorporation of epsilon-N-2-hydroxyisobutyryl-lysine into recombinant histones. Acs Chemical Biology, 10(7), 1599-1603. https://doi.org/10.1021/cb501055h
Xie, Z. Y., Dai, J. B. A., Dai, L. Z., Tan, M. J., Cheng, Z. Y., Wu, Y. M., Boeke, J. D., & Zhao, Y. M. (2012). Lysine succinylation and lysine malonylation in histones. Molecular & Cellular Proteomics, 11(5), 100-107. https://doi.org/10.1074/mcp.M111.015875
Xie, Z., Zhang, D., Chung, D., Tang, Z., Huang, H., Dai, L., Qi, S., Li, J., Colak, G., Chen, Y., Xia, C., Peng, C., Ruan, H., Kirkey, M., Wang, D., Jensen, L. M., Kwon, O. K., Lee, S., Pletcher, S. D., … Zhao, Y. (2016). Metabolic regulation of gene expression by histone lysine beta-hydroxybutyrylation. Molecular Cell, 62(2), 194-206. https://doi.org/10.1016/j.molcel.2016.03.036
Xiong, J., He, J., Zhu, J., Pan, J., Liao, W., Ye, H., Wang, H., Song, Y., Du, Y., Cui, B., Xue, M., Zheng, W., Kong, X., Jiang, K., Ding, K., Lai, L., & Wang, Q. (2022). Lactylation-driven METTL3-mediated RNA m(6)A modification promotes immunosuppression of tumor-infiltrating myeloid cells. Molecular Cell, 82(9), 1660-1677.e1610. https://doi.org/10.1016/j.molcel.2022.02.033
Xiong, X., Panchenko, T., Yang, S., Zhao, S., Yan, P., Zhang, W., Xie, W., Li, Y., Zhao, Y., Allis, C. D., & Li, H. (2016). Selective recognition of Histone crotonylation by double PHD fingers of MOZ and DPF2. Nature Chemical Biology, 12(12), 1111-+. https://doi.org/10.1038/Nchembio.2218
Xu, G., Wang, J., Wu, Z., Qian, L., Dai, L., Wan, X., Tan, M., Zhao, Y., & Wu, Y. (2014). SAHA regulates histone acetylation, butyrylation, and protein expression in neuroblastoma. Journal of Proteome Research, 13(10), 4211-4219. https://doi.org/10.1021/pr500497e
Yang, C., Mi, J. Q., Feng, Y., Ngo, L., Gao, T. L., Yan, L. L., & Zheng, Y. G. (2013). Labeling lysine acetyltransferase substrates with engineered enzymes and functionalized cofactor surrogates. Journal of the American Chemical Society, 135(21), 7791-7794. https://doi.org/10.1021/ja311636b
Yang, D. W., Yin, J., Shan, L. Q., Yi, X. L., Zhang, W., & Ding, Y. B. (2022). Identification of lysine-lactylated substrates in gastric cancer cells. iScience, 25(7), 104630. https://doi.org/10.1016/j.isci.2022.104630
Yang, H., Wang, H., & Andersson, U. (2020). Targeting inflammation driven by HMGB1. Frontiers in Immunology, 11, 484. https://doi.org/10.3389/fimmu.2020.00484
Yang, K., Fan, M., Wang, X., Xu, J., Wang, Y., Tu, F., Gill, P. S., Ha, T., Liu, L., Williams, D. L., & Li, C. (2022). Lactate promotes macrophage HMGB1 lactylation, acetylation, and exosomal release in polymicrobial sepsis. Cell Death and Differentiation, 29(1), 133-146. https://doi.org/10.1038/s41418-021-00841-9
Yang, Y. Y., Ascano, J. M., & Hang, H. C. (2010). Bioorthogonal chemical reporters for monitoring protein acetylation. Journal of the American Chemical Society, 132(11), 3640-3641. https://doi.org/10.1021/ja908871t
Yang, Z., He, M. Z., Austin, J., Pfleger, J., & Abdellatif, M. (2021). Histone H3K9 butyrylation is regulated by dietary fat and stress via an Acyl-CoA dehydrogenase short chain-dependent mechanism. Molecular Metabolism, 53, 101249. https://doi.org/10.1016/j.molmet.2021.101249
Yao, Y., Bade, R., Li, G. T., Zhang, A. Q., Zhao, H. L., Fan, L. F., Zhu, R., & Yuan, J. (2022). Global-scale profiling of differential expressed lysine-lactylated proteins in the cerebral endothelium of cerebral ischemia-reperfusion injury rats. Cellular and Molecular Neurobiology, https://doi.org/10.1007/s10571-022-01277-6
Yi, F., Zhang, Y., Wang, Z., Wang, Z., Li, Z., Zhou, T., Xu, H., Liu, J., Jiang, B., Li, X., Wang, L., Bai, N., Guo, Q., Guan, Y., Feng, Y., Mao, Z., Fan, G., Zhang, S., Wang, C., … Cao, L. (2021). The deacetylation-phosphorylation regulation of SIRT2-SMC1A axis as a mechanism of antimitotic catastrophe in early tumorigenesis. Science Advances, 7(9), eabe5518. https://doi.org/10.1126/sciadv.abe5518
Yilmaz, S., Unal, F., & Yuzbasioglu, D. (2009). The in vitro genotoxicity of benzoic acid in human peripheral blood lymphocytes. Cytotechnology, 60(1-3), 55. https://doi.org/10.1007/s10616-009-9214-z
Yu, J., Chai, P., Xie, M., Ge, S., Ruan, J., Fan, X., & Jia, R. (2021). Histone lactylation drives oncogenesis by facilitating m(6)A reader protein YTHDF2 expression in ocular melanoma. Genome biology, 22(1), 85. https://doi.org/10.1186/s13059-021-02308-z
Yuliwulandari, R., Susilowati, R. W., Wicaksono, B. D., Viyati, K., Prayuni, K., Razari, I., Kristin, E., Syafrizal, Subagyo, Sri Diana, E., Setiawati, S., Ariyani, A., Mahasirimongkol, S., Yanai, H., Mushiroda, T., & Tokunaga, K. (2016). NAT2 variants are associated with drug-induced liver injury caused by anti-tuberculosis drugs in Indonesian patients with tuberculosis. Journal of Human Genetics, 61(6), 533-537. https://doi.org/10.1038/jhg.2016.10
Zhang, D., Tang, Z., Huang, H., Zhou, G., Cui, C., Weng, Y., Liu, W., Kim, S., Lee, S., Perez-Neut, M., Ding, J., Czyz, D., Hu, R., Ye, Z., He, M., Zheng, Y. G., Shuman, H. A., Dai, L., Ren, B., … Zhao, Y. (2019). Metabolic regulation of gene expression by histone lactylation. Nature, 574(7779), 575-580. https://doi.org/10.1038/s41586-019-1678-1
Zhang, K., Chen, Y., Mang, Z. H., & Zhao, Y. M. (2009). Identification and verification of lysine propionylation and butyrylation in yeast core histones using PTMap software. Journal of Proteome Research, 8(2), 900-906. https://doi.org/10.1021/pr8005155
Zhang, Q., Zeng, L., Zhao, C. C., Ju, Y., Konuma, T., & Zhou, M. M. (2016). Structural insights into histone crotonyl-lysine recognition by the AF9 YEATS domain. Structure (London, England), 24(9), 1606-1612. https://doi.org/10.1016/j.str.2016.05.023
Zhao, D., Guan, H., Zhao, S., Mi, W., Wen, H., Li, Y., Zhao, Y., Allis, C. D., Shi, X., & Li, H. (2016). YEATS2 is a selective histone crotonylation reader. Cell Research, 26(5), 629-632. https://doi.org/10.1038/cr.2016.49
Zhao, D., Li, Y. Y., Xiong, X. Z., Chen, Z. L., & Li, H. T. (2017). YEATS domain-a histone acylation reader in health and disease. Journal of Molecular Biology, 429(13), 1994-2002. https://doi.org/10.1016/j.jmb.2017.03.010
Zhao, K., Chai, X., & Marmorstein, R. (2004). Structure and substrate binding properties of cobB, a Sir2 homolog protein deacetylase from Escherichia coli. Journal of Molecular Biology, 337(3), 731-741. https://doi.org/10.1016/j.jmb.2004.01.060
Zhou, T. T., Xu, H. W., Cheng, X., He, Y. Q., Ren, Q., Li, D. Z., Xie, Y., Gao, C., Zhang, Y., Sun, X., Xu, Y., & Huang, W. (2022). Sodium butyrate attenuates diabetic kidney disease partially via histone butyrylation modification. Mediators of Inflammation, 2022, 7643322. https://doi.org/10.1155/2022/7643322
Zhu, Z., Han, Z., Halabelian, L., Yang, X., Ding, J., Zhang, N., Ngo, L., Song, J., Zeng, H., He, M., Zhao, Y., Arrowsmith, C. H., Luo, M., Bartlett, M. G., & Zheng, Y. G. (2021). Identification of lysine isobutyrylation as a new histone modification mark. Nucleic Acids Research, 49(1), 177-189. https://doi.org/10.1093/nar/gkaa1176

Auteurs

Qianyun Fu (Q)

Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia.

Amber Cat (A)

Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia.

Y George Zheng (YG)

Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
C-Reactive Protein Humans Biomarkers Inflammation
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH