Denosumab for giant cell tumors of bone from 2010 to 2022: a bibliometric analysis.
Bibliometric analysis
Denosumab
Emerging trends
Giant cell tumor of bone
Hotspots
Journal
Clinical and experimental medicine
ISSN: 1591-9528
Titre abrégé: Clin Exp Med
Pays: Italy
ID NLM: 100973405
Informations de publication
Date de publication:
Nov 2023
Nov 2023
Historique:
received:
01
04
2023
accepted:
17
04
2023
medline:
2
11
2023
pubmed:
27
4
2023
entrez:
27
4
2023
Statut:
ppublish
Résumé
Giant cell tumors of the bone (GCTB) are considered moderately malignant bone tumors. Denosumab, as a neoadjuvant therapy, provides new possibilities for treating GCTB. However, even after multiple studies and long-term clinical trials, there are limitations in the treatment process. Research data and Medical Subject Headings terms related to denosumab and GCTB were collected from January 2010 to October 2022 using the Web of Science and MeSH ( https://meshb.nlm.nih.gov ) browsers. These data were imported into CiteSpace and VOSviewer softwares for bibliometric analysis. Overall, 445 publications on denosumab and GCTB were identified. Over the last 12 years, the growth rate of the total number of publications has remained relatively stable. The USA published the highest number of articles (83) and had the highest centrality (0.42). Amgen Inc. and Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) First Ortoped Rizzoli were identified as the most influential institutions. Many authors have made outstanding contributions to this field. Lancet Oncology had the highest journal impact factor (54.433). Local recurrence and drug dosage are current research hotspots, and future development trends will mainly focus on prognostic markers of GCTB and the development of new therapies. Further research is required to analyze denosumab's safety and efficacy and understand its local recurrence of GCTB, to identify the optimal dose. Future progress in this field will likely focus on exploring new diagnostic and recurrence markers to monitor disease progression and examine new therapeutic targets and treatment strategies.
Identifiants
pubmed: 37103655
doi: 10.1007/s10238-023-01079-0
pii: 10.1007/s10238-023-01079-0
doi:
Substances chimiques
Denosumab
4EQZ6YO2HI
Bone Density Conservation Agents
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
3053-3075Subventions
Organisme : Natural Science Foundation of Sichuan Province
ID : 2022NSFSC1534
Organisme : Sichuan Province Science and Technology Support Program
ID : 2022YFS0628
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Références
Choi JH, Ro JY. The 2020 WHO classification of tumors of soft tissue: selected changes and new entities. Adv Anat Pathol. 2021;28:44–58. https://doi.org/10.1097/PAP.0000000000000284 .
pubmed: 32960834
Liede A, Bach BA, Stryker S, Hernandez RK, Sobocki P, Bennett B, et al. Regional variation and challenges in estimating the incidence of giant cell tumor of bone. J Bone Joint Surg Am. 2014;96:1999–2007. https://doi.org/10.2106/JBJS.N.00367 .
pubmed: 25471915
Chan CM, Adler Z, Reith JD, Gibbs CP Jr. Risk factors for pulmonary metastases from giant cell tumor of bone. J Bone Joint Surg Am. 2015;97:420–8. https://doi.org/10.2106/JBJS.N.00678 .
pubmed: 25740033
Sanjay BK, Sim FH, Unni KK, McLeod RA, Klassen RA. Giant-cell tumours of the spine. J Bone Joint Surg Br. 1993;75:148–54. https://doi.org/10.1302/0301-620X.75B1.8421014 .
pubmed: 8421014
Goldring SR, Roelke MS, Petrison KK, Bhan AK. Human giant cell tumors of bone identification and characterization of cell types. J Clin Invest. 1987;79:483–91. https://doi.org/10.1172/JCI112838 .
pubmed: 3027126
pmcid: 424109
Chen F, Wang S, Wei Y, Wu J, Huang G, Chen J, et al. Norcantharidin modulates the miR-30a/Metadherin/AKT signaling axis to suppress proliferation and metastasis of stromal tumor cells in giant cell tumor of bone. Biomed Pharmacother. 2018;103:1092–100. https://doi.org/10.1016/j.biopha.2018.04.100 .
pubmed: 29710674
Ren B, Ren X, Wang L, Tu C, Zhang W, Liu Z, et al. A bibliometric research based on hotspots and frontier trends of denosumab. Front Pharmacol. 2022;13:929223. https://doi.org/10.3389/fphar.2022.929223 .
pubmed: 36199692
pmcid: 9527327
Singh AS, Chawla NS, Chawla SP. Giant-cell tumor of bone: treatment options and role of denosumab. Biologics. 2015;9:69–74. https://doi.org/10.2147/BTT.S57359 .
pubmed: 26203221
pmcid: 4507456
Synnestvedt MB, Chen C, Holmes JH. CiteSpace II: visualization and knowledge discovery in bibliographic databases. AMIA Annu Symp Proc. 2005;2005:724–8.
pubmed: 16779135
pmcid: 1560567
Chen C, Hu Z, Liu S, Tseng H. Emerging trends in regenerative medicine: a scientometric analysis in CiteSpace. Expert Opin Biol Ther. 2012;12(5):593–608. https://doi.org/10.1517/14712598.2012.674507 .
pubmed: 22443895
van Eck NJ, Waltman L. Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics. 2017;111(2):1053–70. https://doi.org/10.1007/s11192-017-2300-7 .
pubmed: 28490825
pmcid: 5400793
van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010;84(2):523–38. https://doi.org/10.1007/s11192-009-0146-3 .
pubmed: 20585380
Lopes APVB, de Carvalho MM. Evolution of the open innovation paradigm: towards a contingent conceptual model. Technol Forecast Soc. 2018;132:284–98.
Odriozola-Fernández I, Berbegal-Mirabent J, Merigó-Lindahl JM. Open innovation in small and medium enterprises: a bibliometric analysis. J Organ Change Manag. 2019;32:533–57. https://doi.org/10.1108/JOCM-12-2017-0491 .
Guo YM, Huang ZL, Guo J, Guo XR, Li H, Liu MY, et al. A bibliometric analysis and visualization of blockchain. Futur Gener Comput Syst. 2020. https://doi.org/10.1016/j.future.2020.10.023 .
Errani C, Tsukamoto S, Leone G, Righi A, Akahane M, Tanaka Y, et al. Denosumab may increase the risk of local recurrence in patients with giant-cell tumor of bone treated with curettage. J Bone Joint Surg Am. 2018;100(6):496–504. https://doi.org/10.2106/JBJS.17.00057 .
pubmed: 29557866
Tsukamoto S, Mavrogenis AF, Leone G, Righi A, Akahane M, Tanzi P, et al. Denosumab does not decrease the risk of lung metastases from bone giant cell tumour. Int Orthop. 2019;43(2):483–9. https://doi.org/10.1007/s00264-018-4085-6 .
pubmed: 30099641
Lipplaa A, Dijkstra S, Gelderblom H. Challenges of denosumab in giant cell tumor of bone, and other giant cell-rich tumors of bone. Curr Opin Oncol. 2019;31(4):329–35. https://doi.org/10.1097/CCO.0000000000000529 .
pubmed: 30844887
pmcid: 6613724
Chawla S, Blay JY, Rutkowski P, Le Cesne A, Reichardt P, Gelderblom H, et al. Denosumab in patients with giant-cell tumour of bone: a multicentre, open-label, phase 2 study. Lancet Oncol. 2019;20(12):1719–29. https://doi.org/10.1016/S1470-2045(19)30663-1 .
pubmed: 31704134
Xu Y, Zhang Z, He J, Chen Z. Immune effects of macrophages in rheumatoid arthritis: a bibliometric analysis from 2000 to 2021. Front Immunol. 2022;13:903771. https://doi.org/10.3389/fimmu.2022.903771 .
pubmed: 36172378
pmcid: 9510364
Bone HG, Wagman RB, Brandi ML, Brown JP, Chapurlat R, Cummings SR, et al. 10 years of denosumab treatment in postmenopausal women with osteoporosis: results from the phase 3 randomised FREEDOM trial and open-label extension. Lancet Diabetes Endocrinol. 2017;5(7):513–23. https://doi.org/10.1016/S2213-8587(17)30138-9 .
pubmed: 28546097
Coleman R, Body JJ, Aapro M, Hadji P, Herrstedt J, ESMO Guidelines Working Group. Bone health in cancer patients: ESMO clinical practice guidelines. Ann Oncol. 2014;25:124–37. https://doi.org/10.1093/annonc/mdu103 .
Chawla S, Henshaw R, Seeger L, Choy E, Blay JY, Ferrari S, et al. Safety and efficacy of denosumab for adults and skeletally mature adolescents with giant cell tumour of bone: interim analysis of an open-label, parallel-group, phase 2 study. Lancet Oncol. 2013;14(9):901–8. https://doi.org/10.1016/S1470-2045(13)70277-8 .
pubmed: 23867211
Thomas D, Henshaw R, Skubitz K, Chawla S, Staddon A, Blay JY, et al. Denosumab in patients with giant-cell tumour of bone: an open-label, phase 2 study. Lancet Oncol. 2010;11(3):275–80. https://doi.org/10.1016/S1470-2045(10)70010-3 .
pubmed: 20149736
Branstetter DG, Nelson SD, Manivel JC, Blay JY, Chawla S, Thomas DM, et al. Denosumab induces tumor reduction and bone formation in patients with giant-cell tumor of bone. Clin Cancer Res. 2012;18(16):4415–24. https://doi.org/10.1158/1078-0432.CCR-12-0578 .
pubmed: 22711702
Mak IW, Evaniew N, Popovic S, Tozer R, Ghert M. A translational study of the neoplastic cells of giant cell tumor of bone following neoadjuvant denosumab. J Bone Joint Surg Am. 2014;96(15):e127. https://doi.org/10.2106/JBJS.M.01332 .
pubmed: 25100780
Scoccianti G, Totti F, Scorianz M, Baldi G, Roselli G, Beltrami G, et al. Preoperative denosumab with curettage and cryotherapy in giant cell tumor of bone: Is there an increased risk of local recurrence? Clin Orthop Relat Res. 2018;476(9):1783–90. https://doi.org/10.1007/s11999.0000000000000104 .
pubmed: 30778015
pmcid: 6259811
Agarwal MG, Gundavda MK, Gupta R, Reddy R. Does denosumab change the giant cell tumor treatment strategy? Lessons learned from early experience. Clin Orthop Relat Res. 2018;476(9):1773–82. https://doi.org/10.1007/s11999.0000000000000243 .
pubmed: 30794215
pmcid: 6259809
Palmerini E, Chawla NS, Ferrari S, Sudan M, Picci P, Marchesi E, et al. Denosumab in advanced/unresectable giant-cell tumour of bone (GCTB): For how long? Eur J Cancer. 2017;76:118–24. https://doi.org/10.1016/j.ejca.2017.01.028 .
pubmed: 28324746
Behjati S, Tarpey PS, Presneau N, Scheipl S, Pillay N, Van Loo P, et al. Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone. Nat Genet. 2013;45(12):1479–82. https://doi.org/10.1038/ng.2814 .
pubmed: 24162739
Tsukamoto S, Mavrogenis AF, Kido A, Errani C. Current concepts in the treatment of giant cell tumors of bone. Cancers (Basel). 2021;13(15):3647. https://doi.org/10.3390/cancers13153647 .
pubmed: 34359548
Chakarun CJ, Forrester DM, Gottsegen CJ, Patel DB, White EA, Matcuk GR Jr. Giant cell tumor of bone: review, mimics, and new developments in treatment. Radiographics. 2013;33(1):197–211. https://doi.org/10.1148/rg.331125089 .
pubmed: 23322837
Boyce AM. Denosumab: an emerging therapy in pediatric bone disorders. Curr Osteoporos Rep. 2017;15(4):283–92. https://doi.org/10.1007/s11914-017-0380-1 .
pubmed: 28643220
pmcid: 5554707
Rutkowski P, Ferrari S, Grimer RJ, Stalley PD, Dijkstra SP, Pienkowski A, et al. Surgical downstaging in an open-label phase II trial of denosumab in patients with giant cell tumor of bone. Ann Surg Oncol. 2015;22(9):2860–8. https://doi.org/10.1245/s10434-015-4634-9 .
pubmed: 26033180
pmcid: 4531146
van der Heijden L, Dijkstra PD, van de Sande MA, Kroep JR, Nout RA, van Rijswijk CS, et al. The clinical approach toward giant cell tumor of bone. Oncologist. 2014;19(5):550–61. https://doi.org/10.1634/theoncologist.2013-0432 .
pubmed: 24718514
pmcid: 4012970
Matcuk GR Jr, Patel DB, Schein AJ, White EA, Menendez LR. Giant cell tumor: rapid recurrence after cessation of long-term denosumab therapy. Skeletal Radiol. 2015;44(7):1027–31. https://doi.org/10.1007/s00256-015-2117-5 .
pubmed: 25712768
Asano N, Horiuchi K. ASO author reflections: preoperative denosumab may increase the risk of local recurrence of giant cell tumor of bone after curettage surgery. Ann Surg Oncol. 2022;29(6):4001. https://doi.org/10.1245/s10434-022-11430-6 .
pubmed: 35169975
Omlor GW, Lange J, Streit M, Gantz S, Merle C, Germann T, et al. Retrospective analysis of 51 intralesionally treated cases with progressed giant cell tumor of the bone: local adjuvant use of hydrogen peroxide reduces the risk for tumor recurrence. World J Surg Oncol. 2019;17(1):73. https://doi.org/10.1186/s12957-019-1613-9 .
pubmed: 31014317
pmcid: 6480805
Lin P, Lin N, Teng W, Wang SD, Pan WB, Huang X, et al. Recurrence of giant cell tumor of the spine after resection: a report of 10 cases. Orthop Surg. 2018;10(2):107–14. https://doi.org/10.1111/os.12375 .
pubmed: 29878714
pmcid: 6001436
Lüke J, von Baer A, Schreiber J, Lübbehüsen C, Breining T, Mellert K, et al. H3F3A mutation in giant cell tumour of the bone is detected by immunohistochemistry using a monoclonal antibody against the G34W mutated site of the histone H3.3 variant. Histopathology. 2017;71(1):125–33. https://doi.org/10.1111/his.13190 .
pubmed: 28211081
Brodowicz T, Hemetsberger M, Windhager R. Denosumab for the treatment of giant cell tumor of the bone. Future Oncol. 2015;11(1):1881–94. https://doi.org/10.2217/fon.15.94 .
pubmed: 26161925
Shibuya I, Takami M, Miyamoto A, Karakawa A, Dezawa A, Nakamura S, et al. In vitro study of the effects of denosumab on giant cell tumor of bone: comparison with zoledronic acid. Pathol Oncol Res. 2019;25(1):409–19. https://doi.org/10.1007/s12253-017-0362-8 .
pubmed: 29159783
Lange T, Stehling C, Fröhlich B, Klingenhöfer M, Kunkel P, Schneppenheim R, et al. Denosumab: a potential new and innovative treatment option for aneurysmal bone cysts. Eur Spine J. 2013;22(6):1417–22. https://doi.org/10.1007/s00586-013-2715-7 .
pubmed: 23455951
pmcid: 3676549
Kurucu N, Akyuz C, Ergen FB, Yalcin B, Kosemehmetoglu K, Ayvaz M, et al. Denosumab treatment in aneurysmal bone cyst: evaluation of nine cases. Pediatr Blood Cancer. 2018. https://doi.org/10.1002/pbc.26926 .
Maximen J, Robin F, Tronchot A, Rossetti A, Ropars M, Guggenbuhl P. Denosumab in the management of aneurysmal bone cyst. Joint Bone Spine. 2022;89(1):105260. https://doi.org/10.1016/j.jbspin.2021.105260 .
pubmed: 34481945
van der Heijden L, Dijkstra PDS, Blay JY, Gelderblom H. Giant cell tumour of bone in the denosumab era. Eur J Cancer. 2017;77:75–83. https://doi.org/10.1016/j.ejca.2017.02.021 .
pubmed: 28365529
McCarthy CL, Gibbons C, Bradley KM, Hassan A, Giele H, Athanasou NA. Giant cell tumour of the distal radius/ulna: response to pre-operative treatment with short-term denosumab. Clin Sarcoma Res. 2017;7:19. https://doi.org/10.1186/s13569-017-0085-3 .
pubmed: 29214010
pmcid: 5708101
Urakawa H, Yonemoto T, Matsumoto S, Takagi T, Asanuma K, Watanuki M, et al. Clinical outcome of primary giant cell tumor of bone after curettage with or without perioperative denosumab in Japan: from a questionnaire for JCOG 1610 study. World J Surg Oncol. 2018;16(1):160. https://doi.org/10.1186/s12957-018-1459-6 .
pubmed: 30089488
pmcid: 6083623
Dufresne A, Derbel O, Cassier P, Vaz G, Decouvelaere AV, Blay JY. Giant-cell tumor of bone, anti-RANKL therapy. Bonekey Rep. 2012;1:149. https://doi.org/10.1038/bonekey.2012.149 .
pubmed: 24363925
pmcid: 3868728
Thomas D, Carriere P, Jacobs I. Safety of denosumab in giant-cell tumour of bone. Lancet Oncol. 2010;11(9):815. https://doi.org/10.1016/S1470-2045(10)70170-4 .
pubmed: 20816372
Ueda T, Morioka H, Nishida Y, Kakunaga S, Tsuchiya H, Matsumoto Y, et al. Objective tumor response to denosumab in patients with giant cell tumor of bone: a multicenter phase II trial. Ann Oncol. 2015;26(10):2149–54. https://doi.org/10.1093/annonc/mdv307 .
pubmed: 26205395
pmcid: 4576909
Martin-Broto J, Cleeland CS, Glare PA, Engellau J, Skubitz KM, Blum RH, et al. Effects of denosumab on pain and analgesic use in giant cell tumor of bone: interim results from a phase II study. Acta Oncol. 2014;53(9):1173–9. https://doi.org/10.3109/0284186X.2014.910313 .
pubmed: 24834795
Deveci MA, Paydaş S, Gönlüşen G, Özkan C, Biçer S, Tekin M. Clinical and pathological results of denosumab treatment for giant cell tumors of bone: prospective study of 14 cases. Acta Orthop Traumatol Turc. 2017;51(1):1–6. https://doi.org/10.1016/j.aott.2016.03.004 .
pubmed: 27784623
Borkowska AM, Szumera-Ciećkiewicz A, Szostakowski B, Pieńkowski A, Rutkowski PL. Denosumab in giant cell tumor of bone: multidisciplinary medical management based on pathophysiological mechanisms and real-world evidence. Cancers (Basel). 2022;14(9):2290. https://doi.org/10.3390/cancers14092290 .
pubmed: 35565419
Zhao Y, Cai Z, Tang X, Du Z, Yang Y, Guo W. Preoperative denosumab may increase the risk of local recurrence of giant-cell tumor of bone treated with curettage: a systematic review and meta-analysis. J Cancer. 2021;12(2):508–17. https://doi.org/10.7150/jca.50575 .
pubmed: 33391447
pmcid: 7739008
Jamshidi K, Gharehdaghi M, Hajialiloo SS, Mirkazemi M, Ghaffarzadehgan K, Izanloo A. Denosumab in patients with giant cell tumor and its recurrence: a systematic review. Arch Bone Jt Surg. 2018;6(4):260–8.
pubmed: 30175172
pmcid: 6110426
Tsukamoto S, Tanaka Y, Mavrogenis A, Kido A, Kawaguchi M, Errani C. Is treatment with denosumab associated with local recurrence in patients with giant cell tumor of bone treated with curettage? A systematic review. Clin Orthop Relat Res. 2020;478(5):1076–85. https://doi.org/10.1097/CORR.0000000000001074 .
pubmed: 31794487
Broehm CJ, Garbrecht EL, Wood J, Bocklage T. Two cases of sarcoma arising in giant cell tumor of bone treated with denosumab. Case Rep Med. 2015;2015:767198. https://doi.org/10.1155/2015/767198 .
pubmed: 26798348
pmcid: 4700156
Park A, Cipriano CA, Hill K, Kyriakos M, McDonald DJ. Malignant transformation of a giant cell tumor of bone treated with denosumab: a case report. JBJS Case Connect. 2016;6(3):e78. https://doi.org/10.2106/JBJS.CC.16.00024 .
pubmed: 29252655
Tsukamoto S, Righi A, Vanel D, Honoki K, Donati DM, Errani C. Development of high-grade osteosarcoma in a patient with recurrent giant cell tumor of the ischium while receiving treatment with denosumab. Jpn J Clin Oncol. 2017;47(11):1090–6. https://doi.org/10.1093/jjco/hyx112 .
pubmed: 29048579
Thomas DM. RANKL, denosumab, and giant cell tumor of bone. Curr Opin Oncol. 2012;24(4):397–403. https://doi.org/10.1097/CCO.0b013e328354c129 .
pubmed: 22581354
Raskin KA, Schwab JH, Mankin HJ, Springfield DS, Hornicek FJ. Giant cell tumor of bone. J Am Acad Orthop Surg. 2013;21(2):118–26. https://doi.org/10.5435/JAAOS-21-02-118 .
pubmed: 23378375
Atkins GJ, Haynes DR, Graves SE, Evdokiou A, Hay S, Bouralexis S, et al. Expression of osteoclast differentiation signals by stromal elements of giant cell tumors. J Bone Miner Res. 2000;15(4):640–9. https://doi.org/10.1359/jbmr.2000.15.4.640 .
pubmed: 10780856
Wülling M, Delling G, Kaiser E. The origin of the neoplastic stromal cell in giant cell tumor of bone. Hum Pathol. 2003;34(10):983–93. https://doi.org/10.1053/s0046-8177(03)00413-1 .
pubmed: 14608531
Yang L, Zhang H, Zhang X, Tang Y, Wu Z, Wang Y, et al. Clinicopathologic and molecular features of denosumab-treated giant cell tumour of bone (GCTB): analysis of 21 cases. Ann Diagn Pathol. 2022;57:151882. https://doi.org/10.1016/j.anndiagpath.2021.151882 .
pubmed: 34995868
Tariq MU, Umer M, Khan Z, Saeed J, Siddiqui M, Din NU. Spectrum of histological features of denosumab treated giant cell tumor of bone; potential pitfalls and diagnostic challenges for pathologists. Ann Diagn Pathol. 2020;45:151479. https://doi.org/10.1016/j.anndiagpath.2020.151479 .
pubmed: 32088577
Hasenfratz M, Mellert K, Marienfeld R, von Baer A, Schultheiss M, Roitman PD, et al. Profiling of three H3F3A-mutated and denosumab-treated giant cell tumors of bone points to diverging pathways during progression and malignant transformation. Sci Rep. 2021;11(1):5709. https://doi.org/10.1038/s41598-021-85319-x .
pubmed: 33707617
pmcid: 7952552
Noh BJ, Park YK. Giant cell tumor of bone: updated molecular pathogenesis and tumor biology. Hum Pathol. 2018;81:1–8. https://doi.org/10.1016/j.humpath.2018.06.017 .
pubmed: 29944971
Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Lüthy R, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997;89(2):309–19. https://doi.org/10.1016/s0092-8674(00)80209-3 .
pubmed: 9108485
Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93(2):165–76. https://doi.org/10.1016/s0092-8674(00)81569-x .
pubmed: 9568710
Skubitz KM. Giant cell tumor of bone: current treatment options. Curr Treat Options Oncol. 2014;15(3):507–18. https://doi.org/10.1007/s11864-014-0289-1 .
pubmed: 24788576
Henry DH, Costa L, Goldwasser F, Hirsh V, Hungria V, Prausova J, et al. Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J Clin Oncol. 2011;29(9):1125–32. https://doi.org/10.1200/JCO.2010.31.3304 .
pubmed: 21343556
Fizazi K, Carducci M, Smith M, Damião R, Brown J, Karsh L, et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet. 2011;377(9768):813–22. https://doi.org/10.1016/S0140-6736(10)62344-6 .
pubmed: 21353695
pmcid: 3090685
Lipton A, Steger GG, Figueroa J, Alvarado C, Solal-Celigny P, Body JJ, et al. Randomized active-controlled Phase II study of denosumab efficacy and safety in patients with breast cancer-related bone metastases. J Clin Oncol. 2007;25(28):4431–7. https://doi.org/10.1200/JCO.2007.11.8604 .
pubmed: 17785705
Body JJ, Facon T, Coleman RE, Lipton A, Geurs F, Fan M, et al. A study of the biological receptor activator of nuclear factor-kappaB ligand inhibitor, denosumab, in patients with multiple myeloma or bone metastases from breast cancer. Clin Cancer Res. 2006;12(4):1221–8. https://doi.org/10.1158/1078-0432.CCR-05-1933 .
pubmed: 16489077
Doshi S, Sutjandra L, Zheng J, Sohn W, Peterson M, Jang G, et al. Denosumab dose selection for patients with bone metastases from solid tumors. Clin Cancer Res. 2012;18(9):2648–57. https://doi.org/10.1158/1078-0432.CCR-11-2944 .
pubmed: 22394983
Federman N, Brien EW, Narasimhan V, Dry SM, Sodhi M, Chawla SP. Giant cell tumor of bone in childhood: clinical aspects and novel therapeutic targets. Paediatr Drugs. 2014;16(1):21–8. https://doi.org/10.1007/s40272-013-0051-3 .
pubmed: 24114694
Huang PH, Lee CC, Chang PY, Shih YH, Yen YS. Giant cell tumor of the sphenoid bone occurring during pregnancy: successful tumor extirpation via endoscopic transnasal transsphenoidal surgery. Clin Neurol Neurosurg. 2013;115(2):222–6. https://doi.org/10.1016/j.clineuro.2012.04.028 .
pubmed: 22648131
Kathiresan ASQ, Johnson JN, Hood BJ, Montoya SP, Vanni S, Gonzalez-Quintero VH. Giant cell bone tumor of the thoracic spine presenting in late pregnancy. Obstet Gynecol. 2011;118:428–31. https://doi.org/10.1097/AOG.0b013e31821081a2 .
pubmed: 21768843
Lau CP, Huang L, Wong KC, Kumta SM. Comparison of the anti-tumor effects of denosumab and zoledronic acid on the neoplastic stromal cells of giant cell tumor of bone. Connect Tissue Res. 2013;54(6):439–49. https://doi.org/10.3109/03008207.2013.848202 .
Rutkowski P, Gaston L, Borkowska A, Stacchiotti S, Gelderblom H, Baldi GG, et al. Denosumab treatment of inoperable or locally advanced giant cell tumor of bone multicenter analysis outside clinical trial. Eur J Surg Oncol. 2018;44(9):1384–90. https://doi.org/10.1016/j.ejso.2018.03.020 .
pubmed: 29650420
Traub F, Singh J, Dickson BC, Leung S, Mohankumar R, Blackstein ME, et al. Efficacy of denosumab in joint preservation for patients with giant cell tumour of the bone. Eur J Cancer. 2016;59:1–12. https://doi.org/10.1016/j.ejca.2016.01.006 .
pubmed: 26990281
Asano N, Saito M, Kobayashi E, Morii T, Kikuta K, Watanabe I, et al. Preoperative denosumab therapy against giant cell tumor of bone is associated with an increased risk of local recurrence after curettage surgery. Ann Surg Oncol. 2022. https://doi.org/10.1245/s10434-022-11411-9 .
Müller DA, Beltrami G, Scoccianti G, Campanacci DA, Franchi A, Capanna R. Risks and benefits of combining denosumab and surgery in giant cell tumor of bone-a case series. World J Surg Oncol. 2016;14(1):281. https://doi.org/10.1186/s12957-016-1034-y .
pubmed: 27809843
pmcid: 5095954
Li H, Gao J, Gao Y, Zheng M, Ye Z. Denosumab in giant cell tumor of bone: current status and pitfalls. Front Oncol. 2020;10:580605. https://doi.org/10.3389/fonc.2020.580605 .
pubmed: 33123484
pmcid: 7567019
Lim CY, Liu X, He F, Liang H, Yang Y, Ji T, et al. Retrospective cohort study of 68 sacral giant cell tumours treated with nerve-sparing surgery and evaluation on therapeutic benefits of denosumab therapy. Bone Joint J. 2020;102-B(2):177–85. https://doi.org/10.1302/0301-620X.102B2.BJJ-2019-0813.R1 .
pubmed: 32009426
Park KS, Jung SM, Park YJ, Kim KJ. Denosumab-related osteonecrosis of the jaw may not be a subject of teriparatide treatment. J Bone Miner Res. 2022;37(10):2044–5. https://doi.org/10.1002/jbmr.4625 .
pubmed: 35751544
Tofé VI, Bagán L, Bagán JV. Osteonecrosis of the jaws associated with denosumab: Study of clinical and radiographic characteristics in a series of clinical cases. J Clin Exp Dent. 2020;12(7):e676–81. https://doi.org/10.4317/jced.57019 .
pubmed: 32904934
pmcid: 7462378
Aljohani S, Gaudin R, Weiser J, Tröltzsch M, Ehrenfeld M, Kaeppler G, et al. Osteonecrosis of the jaw in patients treated with denosumab: a multicenter case series. J Cranio-Maxillofac Surg. 2018;46(9):1515–25. https://doi.org/10.1016/j.jcms.2018.05.046 .
Deventer N, Budny T, Gosheger G, Rachbauer A, Puetzler J, Theil JC, et al. Giant cell tumor of bone: a single center study of 115 cases. J Bone Oncol. 2022;33:100417. https://doi.org/10.1016/j.jbo.2022.100417 .
pubmed: 35242511
pmcid: 8881473
Khan AA, Morrison A, Hanley DA, Felsenberg D, McCauley LK, O’Ryan F, et al. Diagnosis and management of osteonecrosis of the jaw: a systematic review and international consensus. J Bone Min Res. 2015;30(1):3–23. https://doi.org/10.1002/jbmr.2405 .
Sambri A, Medellin MR, Errani C, Campanacci L, Fujiwara T, Donati D, et al. Denosumab in giant cell tumour of bone in the pelvis and sacrum: LONG-term therapy or bone resection? J Orthop Sci. 2020;25(3):513–9. https://doi.org/10.1016/j.jos.2019.05.003 .
pubmed: 31155442
Girolami I, Mancini I, Simoni A, Baldi GG, Simi L, Campanacci D, et al. Denosumab treated giant cell tumour of bone: a morphological, immunohistochemical and molecular analysis of a series. J Clin Pathol. 2016;69(3):240–7. https://doi.org/10.1136/jclinpath-2015-203248 .
pubmed: 26338802
Errani C, Tsukamoto S, Mavrogenis AF. How safe and effective is denosumab for bone giant cell tumour? Int Orthop. 2017;41(11):2397–400. https://doi.org/10.1007/s00264-017-3536-9 .
pubmed: 28646421
Aponte-Tinao LA, Piuzzi NS, Roitman P, Farfalli GL. A high-grade sarcoma arising in a patient with recurrent benign giant cell tumor of the proximal tibia while receiving treatment with denosumab. Clin Orthop Relat Res. 2015;473(9):3050–5. https://doi.org/10.1007/s11999-015-4249-2 .
pubmed: 25758379
pmcid: 4523533
van der Heijden L, Lipplaa A, van Langevelde K, Bovée JVMG, van de Sande MAJ, Gelderblom H. Updated concepts in treatment of giant cell tumor of bone. Curr Opin Oncol. 2022;34(4):371–8. https://doi.org/10.1097/CCO.0000000000000852 .
pubmed: 35837707
Kato I, Furuya M, Matsuo K, Kawabata Y, Tanaka R, Ohashi K. Giant cell tumours of bone treated with denosumab: histological, immunohistochemical and H3F3A mutation analyses. Histopathology. 2018;72(6):914–22. https://doi.org/10.1111/his.13448 .
pubmed: 29206281
Gong L, Bui MM, Zhang W, Sun X, Zhang M, Yi D. H3F3A G34 mutation DNA sequencing and G34W immunohistochemistry analysis in 366 cases of giant cell tumors of bone and other bone tumors. Histol Histopathol. 2021;36(1):61–8. https://doi.org/10.14670/HH-18-264 .
pubmed: 33021329
Pasricha S, Pruthi M, Jajodia A, Kumar A, Gupta G, Sharma A, et al. Reliability and role of mutation-specific H3F3A (Histone 3–3) G34W immunohistochemistry to differentiate giant cell tumor of bone from its clinicoradiologic and histologic mimics: an institutional study. Appl Immunohistochem Mol Morphol. 2022;30(1):36–41. https://doi.org/10.1097/PAI.0000000000000964 .
pubmed: 34347625
Wągrodzki M, Tysarowski A, Seliga K, Wojnowska A, Stepaniuk M, Castañeda W, et al. Diagnostic utility of genetic and immunohistochemical H3–3A mutation analysis in giant cell tumour of bone. Int J Mol Sci. 2022;23(2):969. https://doi.org/10.3390/ijms23020969 .
pubmed: 35055156
pmcid: 8778699
Fellenberg J, Sähr H, Mancarella D, Plass C, Lindroth AM, Westhauser F. Knock-down of oncohistone H3F3A-G34W counteracts the neoplastic phenotype of giant cell tumor of bone derived stromal cells. Cancer Lett. 2019;448:61–9. https://doi.org/10.1016/j.canlet.2019.02.001 .
pubmed: 30742944
Cottone L, Ligammari L, Knowles HJ, Lee HM, Henderson S, Bianco S, et al. Aberrant paracrine signalling for bone remodelling underlies the mutant histone-driven giant cell tumour of bone. Cell Death Differ. 2022;29(12):2459–71. https://doi.org/10.1038/s41418-022-01031-x .
pubmed: 36138226
pmcid: 9750984
Palmerini E, Pazzaglia L, Cevolani L, Pratelli L, Pierini M, Quattrini I, et al. Bone turnover marker (BTM) changes after denosumab in giant cell tumors of bone (GCTB): a phase II trial correlative study. Cancers (Basel). 2022;14(12):2863. https://doi.org/10.3390/cancers14122863 .
pubmed: 35740530
Watanabe N, Matsumoto S, Shimoji T, Ae K, Tanizawa T, Gokita T, et al. Early evaluation of the therapeutic effect of denosumab on tartrate-resistant acid phosphatase 5b expression in a giant cell tumor of bone: a case report. BMC Res Notes. 2014;7:608. https://doi.org/10.1186/1756-0500-7-608 .
pubmed: 25193435
pmcid: 4163159
Hayashida K, Kawabata Y, Kato I, Kamiishi T, Matsuo K, Takeyama M, et al. Clinical and pathological analysis of giant cell tumor of bone with denosumab treatment and local recurrence. J Orthop Sci. 2022;27(1):215–21. https://doi.org/10.1016/j.jos.2020.11.005 .
pubmed: 33358447
Toda Y, Kohashi K, Yamamoto H, Ishihara S, Ito Y, Susuki Y, et al. Tumor microenvironment in giant cell tumor of bone: evaluation of PD-L1 expression and SIRPα infiltration after denosumab treatment. Sci Rep. 2021;11(1):14821. https://doi.org/10.1038/s41598-021-94022-w .
pubmed: 34285260
pmcid: 8292371
Xiang F, Liu H, Deng J, Ma W, Chen Y. Progress on denosumab use in giant cell tumor of bone: dose and duration of therapy. Cancers (Basel). 2022;14(23):5758. https://doi.org/10.3390/cancers14235758 .
pubmed: 36497239
Kumta S, Huang L, Cheng Y, Chow L, Lee K, Zheng M. Expression of VEGF and MMP-9 in giant cell tumor of bone and other osteolytic lesions. Life Sci. 2003;73(11):1427–36. https://doi.org/10.1016/s0024-3205(03)00434-x .
pubmed: 12850503
English WR, Lunt SJ, Fisher M, Lefley DV, Dhingra M, Lee YC, et al. Differential expression of VEGFA isoforms regulates metastasis and response to anti-VEGFA therapy in sarcoma. Cancer Res. 2017;77(10):2633–46. https://doi.org/10.1158/0008-5472.CAN-16-0255 .
pubmed: 28377452
Zhang J, Dong J, Yang Z, Ma X, Zhang J, Li M, et al. Expression of ezrin, CD44, and VEGF in giant cell tumor of bone and its significance. World J Surg Oncol. 2015;13:168. https://doi.org/10.1186/s12957-015-0579-5 .
pubmed: 25929323
pmcid: 4434870
Gong T, Luo Y, Wang Y, Zheng C, Fang J, Min L, et al. Multiple pulmonary metastases of recurrent giant cell tumor of bone with expression of VEGFR-2 successfully controlled by denosumab and apatinib: a case report and literature review. Cancer Manag Res. 2021;13:4447–54. https://doi.org/10.2147/CMAR.S312846 .
pubmed: 34113170
pmcid: 8184137
De Vita A, Vanni S, Miserocchi G, Fausti V, Pieri F, Spadazzi C, et al. A rationale for the activity of bone target therapy and tyrosine kinase inhibitor combination in giant cell tumor of bone and desmoplastic fibroma: translational evidences. Biomedicines. 2022;10(2):372. https://doi.org/10.3390/biomedicines10020372 .
pubmed: 35203581
pmcid: 8962296
Mahdal M, Neradil J, Mudry P, Paukovcekova S, Staniczkova Zambo I, Urban J, et al. New Target for precision medicine treatment of giant-cell tumor of bone: sunitinib is effective in the treatment of neoplastic stromal cells with activated PDGFRβ signaling. Cancers (Basel). 2021;13(14):3543. https://doi.org/10.3390/cancers13143543 .
pubmed: 34298757
Venneker S, van Eenige R, Kruisselbrink AB, Palubeckaitė I, Taliento AE, Briaire-de Bruijn IH, et al. Histone deacetylase inhibitors as a therapeutic strategy to eliminate neoplastic “Stromal” cells from giant cell tumors of bone. Cancers (Basel). 2022;14(19):4708. https://doi.org/10.3390/cancers14194708 .
pubmed: 36230631
Liang X, Xue J, Ge X, Li J, Li H, Xue L, et al. Safety, tolerability, and pharmacokinetics/pharmacodynamics of JMT103 in patients with bone metastases from solid tumors. Front Oncol. 2022;12:971594. https://doi.org/10.3389/fonc.2022.971594 .
pubmed: 35992822
pmcid: 9389458
Liverani C, Mercatali L, Spadazzi C, La Manna F, De Vita A, Riva N, et al. CSF-1 blockade impairs breast cancer osteoclastogenic potential in co-culture systems. Bone. 2014;66:214–22. https://doi.org/10.1016/j.bone.2014.06.017 .
pubmed: 24956020
Kang FB, Chen W, Wang L, Zhang YZ. The diverse functions of Siglec-15 in bone remodeling and antitumor responses. Pharmacol Res. 2020;155:104728. https://doi.org/10.1016/j.phrs.2020.104728 .
pubmed: 32112821
Humphrey MB, Nakamura MC. A comprehensive review of immunoreceptor regulation of osteoclasts. Clin Rev Allergy Immunol. 2016;51(1):48–58. https://doi.org/10.1007/s12016-015-8521-8 .
pubmed: 26573914
pmcid: 4867136
Hiruma Y, Hirai T, Tsuda E. Siglec-15, a member of the sialic acid-binding lectin, is a novel regulator for osteoclast differentiation. Biochem Biophys Res Commun. 2011;409(3):424–9. https://doi.org/10.1016/j.bbrc.2011.05.015 .
pubmed: 21586272
Fan M, Zhang G, Xie M, Liu X, Zhang Q, Wang L. Siglec-15 as a new perspective therapy target in human giant cell tumor of bone. Curr Oncol. 2022;29(10):7655–71. https://doi.org/10.3390/curroncol29100605 .
pubmed: 36290882
pmcid: 9600077
Liu J. http://pss-system.cnipa.gov.cn/sipopublicsearch/patentsearch/showViewList-jumpToView.shtml . (2015). Accessed 14 May, 2022. inventor; Hailuo Liu, assignee. Fully Human Anti-Rankl Antibody. China patent CN201410168618.9.
Basu Mallick A, Chawla SP. Giant cell tumor of bone: an update. Curr Oncol Rep. 2021;23(5):51. https://doi.org/10.1007/s11912-021-01047-5 .
pubmed: 33754215