NMR as a tool for compound identification in mixtures.
2D NMR
NMR
compound annotation
dereplication
Journal
Phytochemical analysis : PCA
ISSN: 1099-1565
Titre abrégé: Phytochem Anal
Pays: England
ID NLM: 9200492
Informations de publication
Date de publication:
Jun 2023
Jun 2023
Historique:
revised:
05
04
2023
received:
14
03
2023
accepted:
07
04
2023
medline:
5
6
2023
pubmed:
2
5
2023
entrez:
2
5
2023
Statut:
ppublish
Résumé
Natural products and metabolomics are intrinsically linked through efforts to analyze complex mixtures for compound annotation. Although most studies that aim for compound identification in mixtures use MS as the main analysis technique, NMR has complementary advances that are worth exploring for enhanced structural confidence. This review aimed to showcase a portfolio of the main tools available for compound identification using NMR. COLMAR, SMART-NMR, MADByTE, and NMRfilter are presented using examples collected from real samples from the perspective of a natural product chemist. Data are also made available through Zenodo so that readers can test each case presented here. The acquisition of
Substances chimiques
Complex Mixtures
0
Biological Products
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
385-392Subventions
Organisme : Brazilian Federal Funding Agency Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
ID : 304501/2021-2
Organisme : Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES)
Organisme : Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)
ID : 210.489/2019 APQ-1
Informations de copyright
© 2023 John Wiley & Sons Ltd.
Références
Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83(3):770-803. doi:10.1021/acs.jnatprod.9b01285
Wolfender JL, Litaudon M, Touboul D, Queiroz EF. Innovative omics-based approaches for prioritisation and targeted isolation of natural products-new strategies for drug discovery. Nat Prod Rep. 2019;36(6):855-868. doi:10.1039/C9NP00004F
Sumner LW, Mendes P, Dixon RA. Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry. 2003;62(6):817-836. doi:10.1016/S0031-9422(02)00708-2
Blaise BJ, Correia G, Tin A, et al. Power analysis and sample size determination in metabolic phenotyping. Anal Chem. 2016;88(10):5179-5188. doi:10.1021/acs.analchem.6b00188
Peisl BYL, Schymanski EL, Wilmes P. Dark matter in host-microbiome metabolomics: tackling the unknowns-a review. Anal Chim Acta. 2018;1037:13-27. doi:10.1016/j.aca.2017.12.034
Kuhn S, Colreavy-Donnelly S, Santana de Souza J, Borges RM. An integrated approach for mixture analysis using MS and NMR techniques. Faraday Discuss. 2019;218(0):339-353. doi:10.1039/C8FD00227D
Bingol K, Li DW, Zhang B, Bruschweiler R. Comprehensive metabolite identification strategy using multiple two-dimensional NMR spectra of a complex mixture implemented in the COLMARm web server. Anal Chem. 2016;88(24):12411-12418. doi:10.1021/acs.analchem.6b03724
Wang C, Timari I, Zhang B, et al. COLMAR lipids web server and ultrahigh-resolution methods for two-dimensional nuclear magnetic resonance- and mass spectrometry-based lipidomics. J Proteome Res. 2020;19(4):1674-1683. doi:10.1021/acs.jproteome.9b00845
Bingol K, Li D-W, Bruschweiler-Li L, et al. Unified and isomer-specific NMR metabolomics database for the accurate analysis of 13C-1H HSQC spectra. ACS Chem Biol. 2015;10(2):452-459. doi:10.1021/cb5006382
Reher R, Kim HW, Zhang C, et al. A convolutional neural network-based approach for the rapid annotation of molecularly diverse natural products. J Am Chem Soc. 2020;142(9):4114-4120. doi:10.1021/jacs.9b13786
Wang M, Carver JJ, Phelan VV, et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol. 2016;34:828-837.
Kautsar SA, Blin K, Shaw S, et al. MIBiG 2.0: a repository for biosynthetic gene clusters of known function. Nucleic Acids Res. 2019;48:D454-D458.
van Santen JA, Jacob G, Singh AL, et al. The natural products atlas: an open access knowledge base for microbial natural products discovery. ACS Cent Sci. 2019;5(11):1824-1833. doi:10.1021/acscentsci.9b00806
Kim HW, Kim SS, Kang KB, et al. Combined MS/MS-NMR annotation guided discovery of Iris lactea var. chinensis seed as a source of viral neuraminidase inhibitory polyphenols. Molecules. 2020;25:3383.
Egan JM, van Santen JA, Liu DY, Linington RG. Development of an NMR-based platform for the direct structural annotation of complex natural products mixtures. J Nat Prod. 2021;84(4):1044-1055. doi:10.1021/acs.jnatprod.0c01076
Hansen AL, Kupce ER, Li DW, Bruschweiler-Li L, Wang C, Bruschweiler R. 2D NMR-based metabolomics with HSQC/TOCSY NOAH supersequences. Anal Chem. 2021;93(15):6112-6119. doi:10.1021/acs.analchem.0c05205
Kupce E, Claridge TDW. NOAH: NMR supersequences for small molecule analysis and structure elucidation. Angew Chem Int Ed Engl. 2017;56(39):11779-11783. doi:10.1002/anie.201705506
Kuhn S, Colreavy-Donnelly S, de Andrade Silva Quaresma LE, de Andrade Silva Quaresma E, Borges RM. Applying NMR compound identification using NMRfilter to match predicted to experimental data. Metabolomics. 2020;16(12):123. doi:10.1007/s11306-020-01748-1
Kuhn S, Egert B, Neumann S, Steinbeck C. Building blocks for automated elucidation of metabolites: machine learning methods for NMR prediction. BMC Bioinform. 2008;9(1):400. doi:10.1186/1471-2105-9-400
Steinbeck C, Kuhn S. NMRShiftDB -- compound identification and structure elucidation support through a free community-built web database. Phytochemistry. 2004;65(19):2711-2717. doi:10.1016/j.phytochem.2004.08.027
Kuhn S, Johnson SR. Stereo-aware extension of HOSE codes. ACS Omega. 2019;4(4):7323-7329. doi:10.1021/acsomega.9b00488
Kupče Ē, Mote KR, Webb A, Madhu PK, Claridge TDW. Multiplexing experiments in NMR and multi-nuclear MRI. Prog Nucl Magn Reson Spectrosc. 2021;124-125:1-56. doi:10.1016/j.pnmrs.2021.03.001
Kupče Ē, Yong JRJ, Widmalm G, Claridge TDW. Parallel NMR supersequences: ten spectra in a single measurement. JACS Au. 2021;1(11):1892-1897. doi:10.1021/jacsau.1c00423
Kupče E. NMR with multiple receivers. Top Curr Chem. 2013;335:71-96. doi:10.1007/128_2011_226
Claridge TDW, Mayzel M, Kupce E. Triplet NOAH supersequences optimised for small molecule structure characterisation. Magn Reson Chem. 2019;57(11):946-952. doi:10.1002/mrc.4887
Yong JRJ, Kupce ER, Claridge TDW. Modular pulse program generation for NMR supersequences. Anal Chem. 2022;94(4):2271-2278. doi:10.1021/acs.analchem.1c04964
Borges RM, das Neves Costa F, Chagas FO, et al. Data Fusion-based Discovery (DAFdiscovery) pipeline to aid compound annotation and bioactive compound discovery across diverse spectral data. Phytochem Anal. 2023;34:48-55.
Rogers S, Ong CW, Wandy J, Ernst M, Ridder L, van der Hooft JJJ. Deciphering complex metabolite mixtures by unsupervised and supervised substructure discovery and semi-automated annotation from MS/MS spectra. Faraday Discuss. 2019;218(0):284-302. doi:10.1039/C8FD00235E
Nothias LF, Petras D, Schmid R, et al. Feature-based molecular networking in the GNPS analysis environment. Nat Methods. 2020;17(9):905-908. doi:10.1038/s41592-020-0933-6
Kuhn S, Cobas C, Barba A, Colreavy-Donnelly S, Caraffini F, Borges RM. Direct deduction of chemical class from NMR spectra. J Magn Reson. 2023;348:107381. doi:10.1016/j.jmr.2023.107381