MHC-II dynamics are maintained in HLA-DR allotypes to ensure catalyzed peptide exchange.


Journal

Nature chemical biology
ISSN: 1552-4469
Titre abrégé: Nat Chem Biol
Pays: United States
ID NLM: 101231976

Informations de publication

Date de publication:
10 2023
Historique:
received: 10 09 2022
accepted: 17 03 2023
medline: 28 9 2023
pubmed: 5 5 2023
entrez: 4 5 2023
Statut: ppublish

Résumé

Presentation of antigenic peptides by major histocompatibility complex class II (MHC-II) proteins determines T helper cell reactivity. The MHC-II genetic locus displays a large degree of allelic polymorphism influencing the peptide repertoire presented by the resulting MHC-II protein allotypes. During antigen processing, the human leukocyte antigen (HLA) molecule HLA-DM (DM) encounters these distinct allotypes and catalyzes exchange of the placeholder peptide CLIP by exploiting dynamic features of MHC-II. Here, we investigate 12 highly abundant CLIP-bound HLA-DRB1 allotypes and correlate dynamics to catalysis by DM. Despite large differences in thermodynamic stability, peptide exchange rates fall into a target range that maintains DM responsiveness. A DM-susceptible conformation is conserved in MHC-II molecules, and allosteric coupling between polymorphic sites affects dynamic states that influence DM catalysis. As exemplified for rheumatoid arthritis, we postulate that intrinsic dynamic features of peptide-MHC-II complexes contribute to the association of individual MHC-II allotypes with autoimmune disease.

Identifiants

pubmed: 37142807
doi: 10.1038/s41589-023-01316-3
pii: 10.1038/s41589-023-01316-3
pmc: PMC10522485
doi:

Substances chimiques

HLA-D Antigens 0
HLA-DR Antigens 0
Peptides 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1196-1204

Informations de copyright

© 2023. The Author(s).

Références

Abualrous, E. T., Sticht, J. & Freund, C. Major histocompatibility complex (MHC) class I and class II proteins: impact of polymorphism on antigen presentation. Curr. Opin. Immunol. 70, 95–104 (2021).
pubmed: 34052735 doi: 10.1016/j.coi.2021.04.009
Wieczorek, M. et al. Major histocompatibility complex (MHC) class I and MHC class II proteins: conformational plasticity in antigen presentation. Front. Immunol. 8, 292 (2017).
pubmed: 28367149 pmcid: 5355494 doi: 10.3389/fimmu.2017.00292
Lan, H., Becker, M. & Freund, C. The mode of action of tapasin on major histocompatibility class I (MHC-I) molecules. J. Biol. Chem. 299, 102987 (2023).
pubmed: 36758805 pmcid: 10040737 doi: 10.1016/j.jbc.2023.102987
Hafstrand, I., Aflalo, A. & Boyle, L. H. Why TAPBPR? Implications of an additional player in MHC class I peptide presentation. Curr. Opin. Immunol. 70, 90–94 (2021).
pubmed: 34052734 doi: 10.1016/j.coi.2021.04.011
Wieczorek, M. et al. MHC class II complexes sample intermediate states along the peptide exchange pathway. Nat. Commun. 7, 13224 (2016).
pubmed: 27827392 pmcid: 5105163 doi: 10.1038/ncomms13224
Pos, W. et al. Crystal structure of the HLA-DM–HLA-DR1 complex defines mechanisms for rapid peptide selection. Cell 151, 1557–1568 (2012).
pubmed: 23260142 pmcid: 3530167 doi: 10.1016/j.cell.2012.11.025
Guce, A. I. et al. HLA-DO acts as a substrate mimic to inhibit HLA-DM by a competitive mechanism. Nat. Struct. Mol. Biol. 20, 90–98 (2013).
pubmed: 23222639 doi: 10.1038/nsmb.2460
Yin, L. et al. Susceptibility to HLA-DM protein is determined by a dynamic conformation of major histocompatibility complex class II molecule bound with peptide. J. Biol. Chem. 289, 23449–23464 (2014).
pubmed: 25002586 pmcid: 4156084 doi: 10.1074/jbc.M114.585539
Ferrante, A., Templeton, M., Hoffman, M. & Castellini, M. J. The thermodynamic mechanism of peptide–MHC class II complex formation is a determinant of susceptibility to HLA-DM. J. Immunol. 195, 1251–1261 (2015).
pubmed: 26116504 pmcid: 4505951 doi: 10.4049/jimmunol.1402367
Reyes-Vargas, E., Barker, A. P., Zhou, Z., He, X. & Jensen, P. E. HLA-DM catalytically enhances peptide dissociation by sensing peptide–MHC class II interactions throughout the peptide-binding cleft. J. Biol. Chem. 295, 2959–2973 (2020).
pubmed: 31969393 pmcid: 7062162 doi: 10.1074/jbc.RA119.010645
Chou, C. L. & Sadegh-Nasseri, S. HLA-DM recognizes the flexible conformation of major histocompatibility complex class II. J. Exp. Med. 192, 1697–1706 (2000).
pubmed: 11120767 pmcid: 2213500 doi: 10.1084/jem.192.12.1697
Zarutskie, J. A. et al. The kinetic basis of peptide exchange catalysis by HLA-DM. Proc. Natl Acad. Sci. USA 98, 12450–12455 (2001).
pubmed: 11606721 pmcid: 60074 doi: 10.1073/pnas.211439398
Narayan, K. et al. HLA-DM targets the hydrogen bond between the histidine at position β81 and peptide to dissociate HLA-DR–peptide complexes. Nat. Immunol. 8, 92–100 (2007).
pubmed: 17143275 doi: 10.1038/ni1414
Anders, A.-K. et al. HLA-DM captures partially empty HLA-DR molecules for catalyzed removal of peptide. Nat. Immunol. 12, 54–61 (2011).
pubmed: 21131964 doi: 10.1038/ni.1967
Sette, A., Southwood, S., Miller, J. & Appella, E. Binding of major histocompatibility complex class II to the invariant chain-derived peptide, CLIP, is regulated by allelic polymorphism in class II. J. Exp. Med. 181, 677–683 (1995).
pubmed: 7836921 doi: 10.1084/jem.181.2.677
McInnes, G. et al. Global Biobank Engine: enabling genotype–phenotype browsing for biobank summary statistics. Bioinformatics 35, 2495–2497 (2019).
pubmed: 30520965 doi: 10.1093/bioinformatics/bty999
Schlundt, A. et al. A xenon-129 biosensor for monitoring MHC–peptide interactions. Angew. Chem. Int. Ed. Engl. 48, 4142–4145 (2009).
pubmed: 19408266 doi: 10.1002/anie.200806149
Álvaro-Benito, M., Wieczorek, M., Sticht, J., Kipar, C. & Freund, C. HLA-DMA polymorphisms differentially affect MHC class II peptide loading. J. Immunol. 194, 803–816 (2015).
pubmed: 25505276 doi: 10.4049/jimmunol.1401389
Hellman, L. M. et al. Differential scanning fluorimetry based assessments of the thermal and kinetic stability of peptide–MHC complexes. J. Immunol. Methods 432, 95–101 (2016).
pubmed: 26906089 pmcid: 4837003 doi: 10.1016/j.jim.2016.02.016
Scally, S. W. et al. A molecular basis for the association of the HLA-DRB1 locus, citrullination, and rheumatoid arthritis. J. Exp. Med. 210, 2569–2582 (2013).
pubmed: 24190431 pmcid: 3832918 doi: 10.1084/jem.20131241
Günther, S. et al. Bidirectional binding of invariant chain peptides to an MHC class II molecule. Proc. Natl Acad. Sci. USA 107, 22219–22224 (2010).
pubmed: 21115828 pmcid: 3009805 doi: 10.1073/pnas.1014708107
Ghosh, P., Amaya, M., Mellins, E. & Wiley, D. C. The structure of an intermediate in class II MHC maturation: CLIP bound to HLA-DR3. Nature 378, 457–462 (1995).
pubmed: 7477400 doi: 10.1038/378457a0
Reynisson, B. et al. Improved prediction of MHC II antigen presentation through integration and motif deconvolution of mass spectrometry MHC eluted ligand data. J. Proteome Res. 19, 2304–2315 (2020).
pubmed: 32308001 doi: 10.1021/acs.jproteome.9b00874
Reynisson, B., Alvarez, B., Paul, S., Peters, B. & Nielsen, M. NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 48, W449–W454 (2020).
pubmed: 32406916 pmcid: 7319546 doi: 10.1093/nar/gkaa379
Bowman, G. R., Noé, F. & Pande, V. S. (eds) An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation. (Springer Dordrecht, 2014).
Prinz, J.-H. et al. Markov models of molecular kinetics: generation and validation. J. Chem. Phys. 134, 174105 (2011).
pubmed: 21548671 doi: 10.1063/1.3565032
Scherer, M. K. et al. PyEMMA 2: a software package for estimation, validation, and analysis of Markov models. J. Chem. Theory Comput. 11, 5525–5542 (2015).
pubmed: 26574340 doi: 10.1021/acs.jctc.5b00743
Stolzenberg, S. PySFD: comprehensive molecular insights from significant feature differences detected among many simulated ensembles. Bioinformatics 35, 1588–1590 (2019).
pubmed: 30247628 doi: 10.1093/bioinformatics/bty818
Zhou, Z., Callaway, K. A., Weber, D. A. & Jensen, P. E. Cutting edge: HLA-DM functions through a mechanism that does not require specific conserved hydrogen bonds in class II MHC–peptide complexes. J. Immunol. 183, 4187–4191 (2009).
pubmed: 19767569 doi: 10.4049/jimmunol.0901663
Horovitz, A. & Fersht, A. R. Strategy for analysing the co-operativity of intramolecular interactions in peptides and proteins. J. Mol. Biol. 214, 613–617 (1990).
pubmed: 2388258 doi: 10.1016/0022-2836(90)90275-Q
Piepenbrink, K. H., Blevins, S. J., Scott, D. R. & Baker, B. M. The basis for limited specificity and MHC restriction in a T cell receptor interface. Nat. Commun. 4, 1948 (2013).
pubmed: 23736024 doi: 10.1038/ncomms2948
Alvaro-Benito, M., Morrison, E., Wieczorek, M., Sticht, J. & Freund, C. Human leukocyte antigen-DM polymorphisms in autoimmune diseases. Open Biol. 6, 160165 (2016).
pubmed: 27534821 pmcid: 5008016 doi: 10.1098/rsob.160165
Gregersen, P. K., Silver, J. & Winchester, R. J. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum. 30, 1205–1213 (1987).
pubmed: 2446635 doi: 10.1002/art.1780301102
Raychaudhuri, S. et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat. Genet. 44, 291–296 (2012).
pubmed: 22286218 pmcid: 3288335 doi: 10.1038/ng.1076
Doebele, R. C. et al. Point mutations in or near the antigen-binding groove of HLA-DR3 implicate class II-associated invariant chain peptide affinity as a constraint on MHC class II polymorphism. J. Immunol. 170, 4683–4692 (2003).
pubmed: 12707347 doi: 10.4049/jimmunol.170.9.4683
Matzaraki, V., Kumar, V., Wijmenga, C. & Zhernakova, A. The MHC locus and genetic susceptibility to autoimmune and infectious diseases. Genome Biol. 18, 76 (2017).
pubmed: 28449694 pmcid: 5406920 doi: 10.1186/s13059-017-1207-1
Álvaro-Benito, M. & Freund, C. Revisiting nonclassical HLA II functions in antigen presentation: peptide editing and its modulation. HLA 96, 415–429 (2020).
pubmed: 32767512 doi: 10.1111/tan.14007
Busch, R. et al. On the perils of poor editing: regulation of peptide loading by HLA-DQ and H2-A molecules associated with celiac disease and type 1 diabetes. Expert Rev. Mol. Med. 14, e15 (2012).
pubmed: 22805744 pmcid: 4157902 doi: 10.1017/erm.2012.9
Santambrogio, L. Molecular determinants regulating the plasticity of the MHC class II immunopeptidome. Front. Immunol. 13, 878271 (2022).
pubmed: 35651601 pmcid: 9148998 doi: 10.3389/fimmu.2022.878271
Hou, T. et al. An insertion mutant in DQA1*0501 restores susceptibility to HLA-DM: implications for disease associations. J. Immunol. 187, 2442–2452 (2011).
pubmed: 21775680 doi: 10.4049/jimmunol.1100255
Hung, S.-C. et al. Epitope selection for HLA-DQ2 presentation: implications for celiac disease and viral defense. J. Immunol. 202, 2558–2569 (2019).
pubmed: 30926644 doi: 10.4049/jimmunol.1801454
Ito, Y. et al. Rapid CLIP dissociation from MHC II promotes an unusual antigen presentation pathway in autoimmunity. J. Exp. Med. 215, 2617–2635 (2018).
pubmed: 30185635 pmcid: 6170167 doi: 10.1084/jem.20180300
Vranken, W. F. et al. The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59, 687–696 (2005).
pubmed: 15815974 doi: 10.1002/prot.20449
Lundström, P. et al. Fractional
pubmed: 17554498 doi: 10.1007/s10858-007-9158-6
Bieri, M. & Gooley, P. R. Automated NMR relaxation dispersion data analysis using NESSY. BMC Bioinformatics 12, 421 (2011).
pubmed: 22032230 pmcid: 3215250 doi: 10.1186/1471-2105-12-421
Robinson, J. et al. IPD-IMGT/HLA Database. Nucleic Acids Res. 48, D948–D955 (2020).
pubmed: 31667505
Doerr, S., Harvey, M. J., Noé, F. & De Fabritiis, G. HTMD: high-throughput molecular dynamics for molecular discovery. J. Chem. Theory Comput. 12, 1845–1852 (2016).
pubmed: 26949976 doi: 10.1021/acs.jctc.6b00049
Dolinsky, T. J., Nielsen, J. E., McCammon, J. A. & Baker, N. A. PDB2PQR: an automated pipeline for the setup of Poisson–Boltzmann electrostatics calculations. Nucleic Acids Res. 32, W665–W667 (2004).
pubmed: 15215472 pmcid: 441519 doi: 10.1093/nar/gkh381
Dolinsky, T. J. et al. PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res. 35, W522–W525 (2007).
pubmed: 17488841 pmcid: 1933214 doi: 10.1093/nar/gkm276
Olsson, M. H. M., Søndergaard, C. R., Rostkowski, M. & Jensen, J. H. PROPKA3: consistent treatment of internal and surface residues in empirical pK
pubmed: 26596171 doi: 10.1021/ct100578z
Harvey, M. J., Giupponi, G. & Fabritiis, G. D. ACEMD: accelerating biomolecular dynamics in the microsecond time scale. J. Chem. Theory Comput. 5, 1632–1639 (2009).
pubmed: 26609855 doi: 10.1021/ct9000685
Hornak, V. et al. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65, 712–725 (2006).
pubmed: 16981200 pmcid: 4805110 doi: 10.1002/prot.21123
Pérez-Hernández, G., Paul, F., Giorgino, T., De Fabritiis, G. & Noé, F. Identification of slow molecular order parameters for Markov model construction. J. Chem. Phys. 139, 015102 (2013).
pubmed: 23822324 doi: 10.1063/1.4811489
Schwantes, C. R. & Pande, V. S. Improvements in Markov state model construction reveal many non-native interactions in the folding of NTL9. J. Chem. Theory Comput. 9, 2000–2009 (2013).
pubmed: 23750122 pmcid: 3673732 doi: 10.1021/ct300878a
Deuflhard, P. & Weber, M. Robust Perron cluster analysis in conformation dynamics. Linear Algebr. Appl. 398, 161–184 (2005).
doi: 10.1016/j.laa.2004.10.026
Krug, M., Weiss, M. S., Heinemann, U. & Mueller, U. XDSAPP: a graphical user interface for the convenient processing of diffraction data using XDS. J. Appl. Cryst. 45, 568–572 (2012).
doi: 10.1107/S0021889812011715
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Cryst. 40, 658–674 (2007).
doi: 10.1107/S0021889807021206
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).
pubmed: 20124702 pmcid: 2815670 doi: 10.1107/S0907444909052925
Smart, O. S. et al. Exploiting structure similarity in refinement: automated NCS and target-structure restraints in BUSTER. Acta Crystallogr. D Biol. Crystallogr. 68, 368–380 (2012).
pubmed: 22505257 pmcid: 3322596 doi: 10.1107/S0907444911056058
Davis, I. W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).
pubmed: 17452350 pmcid: 1933162 doi: 10.1093/nar/gkm216

Auteurs

Esam T Abualrous (ET)

Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany.
Department of Physics, Faculty of Science, Ain Shams University, Cairo, Egypt.

Sebastian Stolzenberg (S)

Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany.

Jana Sticht (J)

Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
Core Facility BioSupraMol, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.

Marek Wieczorek (M)

Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.

Yvette Roske (Y)

Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.

Matthias Günther (M)

Theoretische Systembiologie (B086), Deutsches Krebsforschungszentrum, Heidelberg, Germany.

Steffen Dähn (S)

Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.

Benedikt B Boesen (BB)

Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.

Marcos Martínez Calvo (MM)

Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.

Charlotte Biese (C)

Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.

Frank Kuppler (F)

Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.

Álvaro Medina-García (Á)

Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.

Miguel Álvaro-Benito (M)

Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.

Thomas Höfer (T)

Theoretische Systembiologie (B086), Deutsches Krebsforschungszentrum, Heidelberg, Germany.

Frank Noé (F)

Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany. frank.noe@fu-berlin.de.
Microsoft Research AI4Science, Berlin, Germany. frank.noe@fu-berlin.de.
Department of Physics, Freie Universität Berlin, Berlin, Germany. frank.noe@fu-berlin.de.
Department of Chemistry, Rice University, Houston, TX, USA. frank.noe@fu-berlin.de.

Christian Freund (C)

Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany. christian.freund@fu-berlin.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH