Centaurea triumfetii essential oil chemical composition, comparative analysis, and antimicrobial activity of selected compounds.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
08 05 2023
08 05 2023
Historique:
received:
01
02
2023
accepted:
24
04
2023
medline:
10
5
2023
pubmed:
9
5
2023
entrez:
8
5
2023
Statut:
epublish
Résumé
The essential oils from the Centaurea genus are well known for their pharmacological properties. The most abundant and dominant chemical components in Centaurea essential oils are ß-caryophyllene, hexadecanoic acid, spathulenol, pentacosane, caryophyllene oxide, and phytol. However, whether these dominant components are the key drivers for observed antimicrobial activity remains unclear. Thus, the aim of this study was dual. Here we provide comprehensive, literature-based data to correlate the chemical compounds in Centaurea essential oils with the tested antimicrobial activity. Secondly, we characterized the essential oil of Centaurea triumfettii All. squarrose knapweed using coupled system gas chromatography-mass spectrometry and tested its phytochemicals for antimicrobial activity against E. coli and S. epidermis using disc diffusion assay and monitoring their growth in Muller Hinton broth. The most abundant compounds in C. triumfettii essential oil were hexadecanoic acid (11.1%), spathulenol (10.8%), longifolene (8.8%), germacrene D (8.4%), aromadendrene oxide (6.0%) and linoleic acid (5.3%). Based on our analysis of literature data from other Centaurea essential oils, they were positively correlated with antimicrobial activity. Using an agar disk diffusion method, tested chemical constituents did not show experimental evidence to support this positive correlation to antimicrobial activity when we tested them as pure components. The antibacterial effect of essential oil constituents may be related to a complex synergistic, rather than a single component as suggested by performed network pharmacology analysis, underlying the theoretical interactions between the essential oil phytochemicals listed as potentially responsible for antimicrobial activity and should be confirmed in further in-depth studies. This is the first report on the comparative analysis of Centaurea essential oils with good antimicrobial activity, as well as the first analysis of chemical components of the essential oil from C. triumfettii and the first report of antimicrobial activity of the representative, pure components: aromadendrene, germacrene D, spathulenol, longifolene, and the mixture of selected chemical compounds. This work contributes to the body of knowledge on the genus Centaurea and C. triumfettii species.
Identifiants
pubmed: 37156785
doi: 10.1038/s41598-023-34058-2
pii: 10.1038/s41598-023-34058-2
pmc: PMC10167351
doi:
Substances chimiques
spathulenol
7XV9L96SJJ
Oils, Volatile
0
longifolene
3YXH7YY8WM
aromadendrene
0
germacrene D
V2I9ATG34E
Palmitic Acid
2V16EO95H1
Anti-Bacterial Agents
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
7475Informations de copyright
© 2023. The Author(s).
Références
Nucleic Acids Res. 2023 Jan 6;51(D1):D587-D592
pubmed: 36300620
J Antimicrob Chemother. 2001 May;47(5):565-73
pubmed: 11328766
Phytochemistry. 2005 Jul;66(14):1741-5
pubmed: 16050993
Phytomedicine. 2021 Sep;90:153626
pubmed: 34301463
Molecules. 2019 Jun 05;24(11):
pubmed: 31195752
Planta. 2017 Nov;246(5):803-816
pubmed: 28803364
Sci Rep. 2017 Aug 15;7(1):8211
pubmed: 28811611
Phytother Res. 2015 Mar;29(3):466-73
pubmed: 25625775
Nat Prod Commun. 2012 Aug;7(8):1087-90
pubmed: 22978236
Nucleic Acids Res. 2004 Jan 1;32(Database issue):D277-80
pubmed: 14681412
Food Chem Toxicol. 2008 Feb;46(2):446-75
pubmed: 17996351
Molecules. 2015 Jun 26;20(7):11808-29
pubmed: 26132906
Nat Prod Res. 2012;26(8):703-12
pubmed: 21902569
Sci Rep. 2022 Oct 11;12(1):17044
pubmed: 36220839
BMC Complement Med Ther. 2020 Mar 12;20(1):79
pubmed: 32164639
New Phytol. 2013 Apr;198(1):16-32
pubmed: 23383981
Nat Prod Res. 2019 Apr;33(8):1092-1100
pubmed: 29667451
Nat Prod Commun. 2010 Sep;5(9):1365-8
pubmed: 20922992
Drug Discov Today Technol. 2004 Dec;1(4):337-41
pubmed: 24981612
Science. 1997 Sep 5;277(5331):1453-62
pubmed: 9278503
Am J Clin Pathol. 1966 Apr;45(4):493-6
pubmed: 5325707
Curr Drug Metab. 2018;19(13):1100-1110
pubmed: 30039757
Nat Prod Res. 2008;22(10):825-32
pubmed: 18626815
Int J Mol Sci. 2020 May 12;21(10):
pubmed: 32408699
Fitoterapia. 2007 Apr;78(3):253-4
pubmed: 17329038
Philos Trans A Math Phys Eng Sci. 2016 Apr 13;374(2065):20150202
pubmed: 26953178
Food Sci Nutr. 2014 Jul;2(4):403-16
pubmed: 25473498
Pharmaceuticals (Basel). 2017 Nov 02;10(4):
pubmed: 29099084
Nat Prod Commun. 2010 Oct;5(10):1663-8
pubmed: 21121269
Int J Environ Res Public Health. 2023 Jan 17;20(3):
pubmed: 36767025
Nat Prod Res. 2008;22(10):833-9
pubmed: 18626816
Mol Microbiol. 2003 Sep;49(6):1577-93
pubmed: 12950922
Chem Biodivers. 2017 Feb;14(2):
pubmed: 27552682
Prog Lipid Res. 2021 Apr;82:101093
pubmed: 33577909
Plants (Basel). 2021 Mar 18;10(3):
pubmed: 33803659
Antibiotics (Basel). 2021 Mar 03;10(3):
pubmed: 33802470
Medicines (Basel). 2017 Aug 08;4(3):
pubmed: 28930272