The causes of death in patients with nonalcoholic steatohepatitis following liver transplantation stratified using pre-liver transplant BMI.


Journal

Hepatology international
ISSN: 1936-0541
Titre abrégé: Hepatol Int
Pays: United States
ID NLM: 101304009

Informations de publication

Date de publication:
Dec 2023
Historique:
received: 01 12 2022
accepted: 18 03 2023
medline: 22 11 2023
pubmed: 10 5 2023
entrez: 10 5 2023
Statut: ppublish

Résumé

Determining the effects of pre-liver transplant (LT) BMI independent of underlying ascites on the post-LT outcomes of patients with nonalcoholic steatohepatitis (NASH) is needed to clarify the paradoxical and protective effects of obesity on post-LT endpoints. In order to accomplish this, we used graded severities of ascites to stratify the NASH-LT population and to perform an ascites-specific strata analysis with differing pre-LT BMI levels. 2005-2019 United Network for Organ Sharing (UNOS) Standard Transplant Analysis and Research (STAR) database was queried to select patients with NASH, who were categorized into specific sets of ascites severity: no ascites (n = 1188), mild ascites (n = 4463), and moderate ascites (n = 3525). Then, BMI classification (underweight: < 18.5, normal: 18.5-25, overweight: 25-30, obese: ≥ 30 kg/m Among each ascites category, there were the following numbers of normal, underweight, overweight, and obese BMI patients respectively; no ascites: 161, 4, 359, 664; mild ascites: 643, 28, 1311, 2481; and moderate ascites: 529, 25, 1030, 1941. The obese BMI cohort was at a lower risk of all-cause mortality compared to recipients with normal BMI with mild ascites (aHR: 0.79, 95% Confidence Interval (CI) 0.65-0.94, p-value = 0.010; case-incidence 47.10 vs 56.81 deaths per 1000 person-years) and moderate ascites (aHR: 0.77, 95% CI 0.63-0.94, p-value = 0.009; case-incidence 53.71 vs 66.17 deaths per 1000 person-years). In addition, the overweight BMI cohort with mild ascites demonstrated a lower hazard of all-cause mortality (aHR: 0.80, 95% CI 0.66-0.97, p-value = 0.03; case-incidence 49.09 vs 56.81 deaths per 1000 person-years). There was no difference in graft failure for the three BMI groups (underweight, overweight, and obese) in comparison to normal BMI. Furthermore, the overweight BMI group with mild ascites cohort demonstrated a lower hazard of death due to general infectious causes (aHR: 0.51, 95% CI 0.32-0.83, p = 0.006; case-incidence 6.12 vs 11.91 deaths per 1000 person-years) and sepsis (aHR: 0.49, 95% CI 0.27-0.86, p = 0.01; case-incidence 4.31 vs 8.50 deaths per 1000 person-years). The paradoxical effects of obesity in reducing the risks of all-cause death appears to be in part modulated by ascites. The current study emphasizes the need to evaluate BMI with concomitant ascites severity pre-LT to accurately prognosticate post-LT outcomes when evaluating NASH patients with advanced liver disease.

Sections du résumé

BACKGROUND & AIMS OBJECTIVE
Determining the effects of pre-liver transplant (LT) BMI independent of underlying ascites on the post-LT outcomes of patients with nonalcoholic steatohepatitis (NASH) is needed to clarify the paradoxical and protective effects of obesity on post-LT endpoints. In order to accomplish this, we used graded severities of ascites to stratify the NASH-LT population and to perform an ascites-specific strata analysis with differing pre-LT BMI levels.
METHODS METHODS
2005-2019 United Network for Organ Sharing (UNOS) Standard Transplant Analysis and Research (STAR) database was queried to select patients with NASH, who were categorized into specific sets of ascites severity: no ascites (n = 1188), mild ascites (n = 4463), and moderate ascites (n = 3525). Then, BMI classification (underweight: < 18.5, normal: 18.5-25, overweight: 25-30, obese: ≥ 30 kg/m
RESULTS RESULTS
Among each ascites category, there were the following numbers of normal, underweight, overweight, and obese BMI patients respectively; no ascites: 161, 4, 359, 664; mild ascites: 643, 28, 1311, 2481; and moderate ascites: 529, 25, 1030, 1941. The obese BMI cohort was at a lower risk of all-cause mortality compared to recipients with normal BMI with mild ascites (aHR: 0.79, 95% Confidence Interval (CI) 0.65-0.94, p-value = 0.010; case-incidence 47.10 vs 56.81 deaths per 1000 person-years) and moderate ascites (aHR: 0.77, 95% CI 0.63-0.94, p-value = 0.009; case-incidence 53.71 vs 66.17 deaths per 1000 person-years). In addition, the overweight BMI cohort with mild ascites demonstrated a lower hazard of all-cause mortality (aHR: 0.80, 95% CI 0.66-0.97, p-value = 0.03; case-incidence 49.09 vs 56.81 deaths per 1000 person-years). There was no difference in graft failure for the three BMI groups (underweight, overweight, and obese) in comparison to normal BMI. Furthermore, the overweight BMI group with mild ascites cohort demonstrated a lower hazard of death due to general infectious causes (aHR: 0.51, 95% CI 0.32-0.83, p = 0.006; case-incidence 6.12 vs 11.91 deaths per 1000 person-years) and sepsis (aHR: 0.49, 95% CI 0.27-0.86, p = 0.01; case-incidence 4.31 vs 8.50 deaths per 1000 person-years).
CONCLUSION CONCLUSIONS
The paradoxical effects of obesity in reducing the risks of all-cause death appears to be in part modulated by ascites. The current study emphasizes the need to evaluate BMI with concomitant ascites severity pre-LT to accurately prognosticate post-LT outcomes when evaluating NASH patients with advanced liver disease.

Identifiants

pubmed: 37160862
doi: 10.1007/s12072-023-10529-6
pii: 10.1007/s12072-023-10529-6
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1393-1415

Subventions

Organisme : NIDDK NIH HHS
ID : NIH NIDDK T32 DK067872-17
Pays : United States
Organisme : NIDDK NIH HHS
ID : NIH NIDDK T32 DK067872-17
Pays : United States

Informations de copyright

© 2023. Asian Pacific Association for the Study of the Liver.

Références

Orci LA, Majno PE, Berney T, Morel P, Mentha G, Toso C. The impact of wait list body mass index changes on the outcome after liver transplantation. Transpl Int. 2013;26(2):170–176
doi: 10.1111/tri.12017 pubmed: 23199077
Pelletier SJ, Schaubel DE, Wei G, et al. Effect of body mass index on the survival benefit of liver transplantation. Liver Transpl. 2007;13(12):1678–1683
doi: 10.1002/lt.21183 pubmed: 18044787
Soma D, Park Y, Mihaylov P, et al. Liver transplantation in recipients with class III obesity: posttransplant outcomes and weight gain. Transplant Direct. 2022;8(2): e1242
doi: 10.1097/TXD.0000000000001242 pubmed: 35018300 pmcid: 8735757
Satapathy SK, Jiang Y, Agbim U, et al. Posttransplant outcome of lean compared with obese nonalcoholic steatohepatitis in the united states: the obesity paradox. Liver Transpl. 2020;26(1):68–79
doi: 10.1002/lt.25672 pubmed: 31665561
Du AL, Danforth DJ, Waterman RS, Gabriel RA. Is obesity associated with better liver transplant outcomes? A retrospective study of hospital length of stay and mortality following liver transplantation. Anesth Analg. 2022;135(1):118–127
doi: 10.1213/ANE.0000000000005921 pubmed: 35061633
Bambha KM, Dodge JL, Gralla J, Sprague D, Biggins SW. Low, rather than high, body mass index confers increased risk for post-liver transplant death and graft loss: Risk modulated by model for end-stage liver disease. Liver Transpl. 2015;21(10):1286–1294
doi: 10.1002/lt.24188 pubmed: 26097202
Choi C, Lennon RJ, Choi DH, et al. Relationship between body mass index and survival among critically Ill patients with cirrhosis. J Intensive Care Med. 2022;37(6):817–824
doi: 10.1177/08850666211029827 pubmed: 34219539
Karagozian R, Bhardwaj G, Wakefield DB, Baffy G. Obesity paradox in advanced liver disease: obesity is associated with lower mortality in hospitalized patients with cirrhosis. Liver Int. 2016;36(10):1450–1456
doi: 10.1111/liv.13137 pubmed: 27037497
Yin Y, Li Y, Shao L, et al. Effect of body mass index on the prognosis of liver cirrhosis. Front Nutr. 2021;8: 700132
doi: 10.3389/fnut.2021.700132 pubmed: 34490322 pmcid: 8417598
Berzigotti A, Garcia-Tsao G, Bosch J, et al. Obesity is an independent risk factor for clinical decompensation in patients with cirrhosis. Hepatology. 2011;54(2):555–561
doi: 10.1002/hep.24418 pubmed: 21567436
Sundaram V, Kaung A, Rajaram A, et al. Obesity is independently associated with infection in hospitalised patients with end-stage liver disease. Aliment Pharmacol Ther. 2015;42(11–12):1271–1280
doi: 10.1111/apt.13426 pubmed: 26510540
Axley P, Ahmed Z, Arora S, et al. NASH is the most rapidly growing etiology for acute-on-chronic liver failure-related hospitalization and disease burden in the United States: a population-based study. Liver Transpl. 2019;25(5):695–705
doi: 10.1002/lt.25443 pubmed: 30861321
Weir CB, Jan A. BMI Classification Percentile And Cut Off Points. StatPearls Publishing; 2022
Thuluvath PJ, Thuluvath AJ, Savva Y, Zhang T. Karnofsky performance status following liver transplantation in patients with multiple organ failures and probable acute-on-chronic liver failure. Clin Gastroenterol Hepatol. 2020;18(1):234–241
doi: 10.1016/j.cgh.2019.03.016 pubmed: 30885883
Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc. 1999;94(446):496–509
doi: 10.1080/01621459.1999.10474144
Tang F, Ishwaran H. Random forest missing data algorithms. Stat Anal Data Min. 2017;10(6):363–377
doi: 10.1002/sam.11348 pubmed: 29403567 pmcid: 5796790
Curcic IB, Berkovic MC, Kuna L, et al. Obesity paradox in chronic liver diseases: product of bias or a real thing? J Clin Transl Hepatol. 2019;7(3):275–279
doi: 10.14218/JCTH.2019.00029 pubmed: 31608220 pmcid: 6783679
Hainer V, Aldhoon-Hainerová I. Obesity paradox does exist. Diabetes Care. 2013;36(Suppl 2):S276–S281
doi: 10.2337/dcS13-2023 pubmed: 23882059 pmcid: 3920805
Leonard J, Heimbach JK, Malinchoc M, Watt K, Charlton M. The impact of obesity on long-term outcomes in liver transplant recipients—results of the NIDDK liver transplant database. Am J Transplant. 2008;8(3):667–672
doi: 10.1111/j.1600-6143.2007.02100.x pubmed: 18294163
Chang SH, Liu X, Carlsson NP, et al. Reexamining the association of body mass index with overall survival outcomes after liver transplantation. Transplant Direct. 2017;3(7): e172
doi: 10.1097/TXD.0000000000000681 pubmed: 28706975 pmcid: 5498013
Braun N, Gomes F, Schütz P. “The obesity paradox” in disease–is the protective effect of obesity true? Swiss Med Wkly. 2015;145(5152): w14265
pubmed: 26709887
Aquilani R, La Rovere MT, Febo O, et al. Preserved muscle protein metabolism in obese patients with chronic heart failure. Int J Cardiol. 2012;160(2):102–108
doi: 10.1016/j.ijcard.2011.03.032 pubmed: 21497922
Liu Z, Barrett EJ. Human protein metabolism: its measurement and regulation. Am J Physiol Endocrinol Metab. 2002;283(6):E1105–E1112
doi: 10.1152/ajpendo.00337.2002 pubmed: 12424100
Ronti T, Lupattelli G, Mannarino E. The endocrine function of adipose tissue: an update. Clin Endocrinol. 2006;64(4):355–365
doi: 10.1111/j.1365-2265.2006.02474.x
Buechler C, Haberl EM, Rein-Fischboeck L, Aslanidis C. Adipokines in liver cirrhosis. Int J Mol Sci. 2017;18(7):1392
doi: 10.3390/ijms18071392 pubmed: 28661458 pmcid: 5535885
Tsochatzis E, Papatheodoridis GV, Archimandritis AJ. The evolving role of leptin and adiponectin in chronic liver diseases. Am J Gastroenterol. 2006;101(11):2629–2640
doi: 10.1111/j.1572-0241.2006.00848.x pubmed: 16952281
Niebauer J, Volk HD, Kemp M, et al. Endotoxin and immune activation in chronic heart failure: a prospective cohort study. Lancet. 1999;353(9167):1838–1842
doi: 10.1016/S0140-6736(98)09286-1 pubmed: 10359409
Rauchhaus M, Coats AJ, Anker SD. The endotoxin-lipoprotein hypothesis. Lancet. 2000;356(9233):930–933
doi: 10.1016/S0140-6736(00)02690-8 pubmed: 11036910
Lassenius MI, Pietiläinen KH, Kaartinen K, et al. Bacterial endotoxin activity in human serum is associated with dyslipidemia, insulin resistance, obesity, and chronic inflammation. Diabetes Care. 2011;34(8):1809–1815
doi: 10.2337/dc10-2197 pubmed: 21636801 pmcid: 3142060
Donini LM, Pinto A, Giusti AM, Lenzi A, Poggiogalle E. Obesity or BMI paradox? Beneath the tip of the Iceberg. Front Nutr. 2020;7:53
doi: 10.3389/fnut.2020.00053 pubmed: 32457915 pmcid: 7221058
Valentijn TM, Galal W, Tjeertes EKM, Hoeks SE, Verhagen HJ, Stolker RJ. The obesity paradox in the surgical population. Surgeon. 2013;11(3):169–176
doi: 10.1016/j.surge.2013.02.003 pubmed: 23490287
Alsiö Å, Nasic S, Ljungström L, Jacobsson G. Impact of obesity on outcome of severe bacterial infections. PLoS ONE. 2021;16(5): e0251887
doi: 10.1371/journal.pone.0251887 pubmed: 34010307 pmcid: 8133483
Roth J, Sahota N, Patel P, et al. Obesity paradox, obesity orthodox, and the metabolic syndrome: an approach to unity. Mol Med. 2017;22:873–885
doi: 10.2119/molmed.2016.00211 pubmed: 27878212
Singhal A, Wilson GC, Wima K, et al. Impact of recipient morbid obesity on outcomes after liver transplantation. Transpl Int. 2015;28(2):148–155
doi: 10.1111/tri.12483 pubmed: 25363625
Conzen KD, Vachharajani N, Collins KM, et al. Morbid obesity in liver transplant recipients adversely affects longterm graft and patient survival in a single-institution analysis. HPB. 2015;17(3):251–257
doi: 10.1111/hpb.12340 pubmed: 25322849
Kaur N, Emamaullee J, Lian T, et al. Impact of morbid obesity on liver transplant candidacy and outcomes: national and regional trends. Transplantation. 2021;105(5):1052–1060
doi: 10.1097/TP.0000000000003404 pubmed: 33741845
Massie AB, Kucirka LM, Segev DL. Big data in organ transplantation: registries and administrative claims. Am J Transplant. 2014;14(8):1723–1730
doi: 10.1111/ajt.12777 pubmed: 25040084 pmcid: 4387865
Doshi SD, Bittermann T, Schiano TD, Goldberg DS. Waitlisted candidates with polycystic liver disease are more likely to be transplanted than those with chronic liver failure. Transplantation. 2017;101(8):1838–1844
doi: 10.1097/TP.0000000000001711 pubmed: 28296808 pmcid: 5524602

Auteurs

David Uihwan Lee (DU)

Division of Gastroenterology and Hepatology, University of Maryland, 620 W Lexington St, Baltimore, MD, 21201, USA. dlee4@som.umaryland.edu.
Liver Center, Division of Gastroenterology and Hepatology, University of Maryland Medical Center, 22 S Greene St, Baltimore, MD, 21201, USA. dlee4@som.umaryland.edu.

Aneesh Bahadur (A)

Department of Medicine, Tufts University School of Medicine, Washington St, Boston, MA, 02111, USA.

Reid Ponder (R)

Department of Medicine, Tufts University School of Medicine, Washington St, Boston, MA, 02111, USA.

Ki Jung Lee (KJ)

Department of Medicine, Tufts University School of Medicine, Washington St, Boston, MA, 02111, USA.

Gregory Hongyuan Fan (GH)

Department of Medicine, Tufts University School of Medicine, Washington St, Boston, MA, 02111, USA.

Harrison Chou (H)

Department of Medicine, Tufts University School of Medicine, Washington St, Boston, MA, 02111, USA.

Zurabi Lominadze (Z)

Division of Gastroenterology and Hepatology, University of Maryland, 620 W Lexington St, Baltimore, MD, 21201, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH