Abnormalities of the corpus callosum. Can prenatal imaging predict the genetic status? Correlations between imaging phenotype and genotype.


Journal

Prenatal diagnosis
ISSN: 1097-0223
Titre abrégé: Prenat Diagn
Pays: England
ID NLM: 8106540

Informations de publication

Date de publication:
06 2023
Historique:
revised: 01 05 2023
received: 21 12 2022
accepted: 04 05 2023
medline: 12 6 2023
pubmed: 13 5 2023
entrez: 13 5 2023
Statut: ppublish

Résumé

Recent studies have evaluated prenatal exome sequencing (pES) for abnormalities of the corpus callosum (CC). The objective of this study was to compare imaging phenotype and genotype findings. This multicenter retrospective study included fetuses with abnormalities of the CC between 2018 and 2020 by ultrasound and/or MRI and for which pES was performed. Abnormalities of the CC were classified as complete (cACC) or partial (pACC) agenesis of the CC, short CC (sCC), callosal dysgenesis (CD), interhemispheric cyst (IHC), or pericallosal lipoma (PL), isolated or not. Only pathogenic (class 5) or likely pathogenic (class 4) (P/LP) variants were considered. 113 fetuses were included. pES identified P/LP variants for 3/29 isolated cACC, 3/19 isolated pACC, 0/10 isolated sCC, 5/10 isolated CD, 5/13 non-isolated cACC, 3/6 non-isolated pACC, 8/11 non-isolated CD and 0/12 isolated IHC and PL. Associated cerebellar abnormalities were significantly associated with P/LP variants (OR = 7.312, p = 0.027). No correlation was found between phenotype and genotype, except for fetuses with a tubulinopathy and an MTOR pathogenic variant. P/LP variants were more frequent in CD and in non-isolated abnormalities of the CC. No such variants were detected for fetuses with isolated sCC, IHC and PL.

Identifiants

pubmed: 37173814
doi: 10.1002/pd.6382
doi:

Substances chimiques

Chloride Channels 0

Types de publication

Multicenter Study Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

746-755

Informations de copyright

© 2023 John Wiley & Sons Ltd.

Références

Edwards TJ, Sherr EH, Barkovich AJ, Richards LJ. Clinical, genetic and imaging findings identify new causes for corpus callosum development syndromes. Brain J Neurol. 2014;137(Pt 6):1579-1613. https://doi.org/10.1093/brain/awt358
Glass HC, Shaw GM, Ma C, Sherr EH. Agenesis of the corpus callosum in California 1983-2003: a population-based study. Am J Med Genet. 2008;146A(19):2495-2500. https://doi.org/10.1002/ajmg.a.32418
Agenesis of the Corpus Callosum: A Clinical Approach to Diagnosis - Palmer - 2014 - American Journal of Medical Genetics Part C: Seminars in Medical Genetics - Wiley Online Library [Internet]. 2023. Disponible sur: https://onlinelibrary.wiley.com/doi/full/10.1002/ajmg.c.31405?casa_token=QTLKbery_icAAAAA%3At11N0lb7hzcVFhYBMnOmj6qdb0Dp5-cMU4bvtANMmV6IUptxEGyo_6CsDn-77MlkMDHO66wPD3xEnqA
Yeh HR, Park HK, Kim HJ, et al. Neurodevelopmental outcomes in children with prenatally diagnosed corpus callosal abnormalities. Brain Dev. 2018;40(8):634-641. https://doi.org/10.1016/j.braindev.2018.04.012
Raile V, Herz NA, Promnitz G, Schneider J, Tietze A, Kaindl AM. Clinical outcome of children with corpus callosum agenesis. Pediatr Neurol. 2020;112:47-52. https://doi.org/10.1016/j.pediatrneurol.2020.07.013
Shwe WH, Schlatterer SD, Williams J, du Plessis AJ, Mulkey SB. Outcome of agenesis of the corpus callosum diagnosed by fetal MRI. Pediatr Neurol. 2022;135:44-51. https://doi.org/10.1016/j.pediatrneurol.2022.07.007
Moutard ML, Kieffer V, Feingold J, et al. Isolated corpus callosum agenesis: a ten-year follow-up after prenatal diagnosis (how are the children without corpus callosum at 10 years of age?). Prenat Diagn. 2012;32(3):277-283. https://doi.org/10.1002/pd.3824
Sotiriadis A, Makrydimas G. Neurodevelopment after prenatal diagnosis of isolated agenesis of the corpus callosum: an integrative review. Am J Obstet Gynecol. 2012;206(4):337.e1-5. https://doi.org/10.1016/j.ajog.2011.12.024
Folliot-Le Doussal L, Chadie A, Brasseur-Daudruy M, Verspyck E, Saugier-Veber P, Marret S. Neurodevelopmental outcome in prenatally diagnosed isolated agenesis of the corpus callosum. Early Hum Dev. 2018;116:9-16. https://doi.org/10.1016/j.earlhumdev.2017.10.004
Bernardes da Cunha S, Carneiro MC, Miguel Sa M, Rodrigues A, Pina C. Neurodevelopmental outcomes following prenatal diagnosis of isolated corpus callosum agenesis: a systematic review. Fetal Diagn Ther. 2021;48(2):88-95. https://doi.org/10.1159/000512534
Lanna M, Scelsa B, Cutillo G, et al. Long-term outcome of consecutive case series of congenital isolated agenesis of corpus callosum. Ultrasound Obstet Gynecol. 2022;60(4):494-498. https://doi.org/10.1002/uog.24898
Al-Hashim AH, Blaser S, Raybaud C, MacGregor D. Corpus callosum abnormalities: neuroradiological and clinical correlations. Dev Med Child Neurol. 2016;58(5):475-484. https://doi.org/10.1111/dmcn.12978
des Portes V, Rolland A, Velazquez-Dominguez J, et al. Outcome of isolated agenesis of the corpus callosum: a population-based prospective study. Eur J Paediatr Neurol EJPN Off J Eur Paediatr Neurol Soc. 2018;22(1):82-92. https://doi.org/10.1016/j.ejpn.2017.08.003
Lord J, McMullan DJ, Eberhardt RY, et al. Prenatal exome sequencing analysis in fetal structural anomalies detected by ultrasonography (PAGE): a cohort study. Lancet Lond Engl. 2019;393(10173):747-757. https://doi.org/10.1016/s0140-6736(18)31940-8
Chandler N, Best S, Hayward J, et al. Rapid prenatal diagnosis using targeted exome sequencing: a cohort study to assess feasibility and potential impact on prenatal counseling and pregnancy management. Genet Med Off J Am Coll Med Genet. 2018;20(11):1430-1437. https://doi.org/10.1038/gim.2018.30
Pangalos C, Hagnefelt B, Lilakos K, Konialis C. First applications of a targeted exome sequencing approach in fetuses with ultrasound abnormalities reveals an important fraction of cases with associated gene defects. PeerJ. 2016;4:e1955. https://doi.org/10.7717/peerj.1955
de Koning MA, Haak MC, Adama van Scheltema PN, et al. From diagnostic yield to clinical impact: a pilot study on the implementation of prenatal exome sequencing in routine care. Genet Med Off J Am Coll Med Genet. 2019;21(10):2303-2310. https://doi.org/10.1038/s41436-019-0499-9
Heide S, Spentchian M, Valence S, et al. Prenatal exome sequencing in 65 fetuses with abnormality of the corpus callosum: contribution to further diagnostic delineation. Genet Med Off J Am Coll Med Genet. 2020;22(11):1887-1891. https://doi.org/10.1038/s41436-020-0872-8
Ghi T, Carletti A, Contro E, et al. Prenatal diagnosis and outcome of partial agenesis and hypoplasia of the corpus callosum. Ultrasound Obstet Gynecol. 2010;35(1):35-41. https://doi.org/10.1002/uog.7489
Lerman-Sagie T, Ben-Sira L, Achiron R, et al. Thick fetal corpus callosum: an ominous sign? Ultrasound Obstet Gynecol. 2009;34(1):55-61. https://doi.org/10.1002/uog.6356
Bartholmot C, Cabet S, Massoud M, et al. Prenatal imaging features and postnatal outcome of short corpus callosum: a series of 42 cases. Fetal Diagn Ther. 2021;48(3):217-226. https://doi.org/10.1159/000512953
Rapport de la CNEOF 2016.
Salomon LJ, Duyme M, Crequat J, et al. French fetal biometry: reference equations and comparison with other charts. Ultrasound Obstet Gynecol. 2006;28(2):193-198. https://doi.org/10.1002/uog.2733
Chavez MR, Ananth CV, Smulian JC, Lashley S, Kontopoulos EV, Vintzileos AM. Fetal transcerebellar diameter nomogram in singleton gestations with special emphasis in the third trimester: a comparison with previously published nomograms. Am J Obstet Gynecol. 2003;189(4):1021-1025. https://doi.org/10.1067/s0002-9378(03)00894-9
Tilea B, Alberti C, Adamsbaum C, et al. Cerebral biometry in fetal magnetic resonance imaging: new reference data. Ultrasound Obstet Gynecol. 2009;33(2):173-181. https://doi.org/10.1002/uog.6276
Salomon LJ, Alfirevic Z, Da Silva Costa F, et al. ISUOG Practice Guidelines: ultrasound assessment of fetal biometry and growth. Ultrasound Obstet Gynecol Off J Int Soc Ultrasound Obstet Gynecol. 2019;53(6):715-723. https://doi.org/10.1002/uog.20272
Cignini P, Padula F, Giorlandino M, et al. Reference charts for fetal corpus callosum length: a prospective cross-sectional study of 2950 fetuses. J Ultrasound Med Off J Am Inst Ultrasound Med. 2014;33(6):1065-1078. https://doi.org/10.7863/ultra.33.6.1065
Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of medical genetics and Genomics and the association for molecular pathology. Genet Med Off J Am Coll Med Genet. 2015;17(5):405-424. https://doi.org/10.1038/gim.2015.30
de Wit Mc, Boekhorst F, Mancini Gm, et al. Advanced genomic testing may aid in counseling of isolated agenesis of the corpus callosum on prenatal ultrasound. Prenat Diagn. 2017;37(12):1191-1197. https://doi.org/10.1002/pd.5158
Diderich KEM, Romijn K, Joosten M, et al. The potential diagnostic yield of whole exome sequencing in pregnancies complicated by fetal ultrasound anomalies. Acta Obstet Gynecol Scand. 2021;100(6):1106-1115. https://doi.org/10.1111/aogs.14053
Leombroni M, Khalil A, Liberati M, D'Antonio F. Fetal midline anomalies: diagnosis and counselling Part 1: corpus callosum anomalies. Eur J Paediatr Neurol. 2018;22(6):951-962. https://doi.org/10.1016/j.ejpn.2018.08.007
Tepper R, Leibovitz Z, Garel C, Sukenik-Halevy R. A new method for evaluating short fetal corpus callosum. Prenat Diagn. 2019;39(13):1283-1290. https://doi.org/10.1002/pd.5598
Achiron R, Achiron A. Development of the human fetal corpus callosum: a high-resolution, cross-sectional sonographic study. Ultrasound Obstet Gynecol Off J Int Soc Ultrasound Obstet Gynecol. 2001;18(4):343-347. https://doi.org/10.1046/j.0960-7692.2001.00512.x
Tsur A, Weisz B, Rosenblat O, et al. Personalized charts for the fetal corpus callosum length. J Matern-Fetal Neonatal Med Off J Eur Assoc Perinat Med Fed Asia Ocean Perinat Soc Int Soc Perinat Obstet. 2019;32(23):3931-3938. https://doi.org/10.1080/14767058.2018.1479389
Meidan R, Bar-Yosef O, Ashkenazi I, et al. Neurodevelopmental outcome following prenatal diagnosis of a short corpus callosum. Prenat Diagn. 2019;39(6):477-483. https://doi.org/10.1002/pd.5460
Manevich-Mazor M, Weissmann-Brenner A, Bar-Yosef O, et al. OP07.08: added value of fetal MRI in the evaluation of fetal anomalies of the corpus callosum: a retrospective analysis of 78 cases. Ultrasound Obstet Gynecol. 2016;48(S1):73.
Millischer AE, Grevent D, Sonigo P, et al. Feasibility and added value of fetal DTI tractography in the evaluation of an isolated short corpus callosum: preliminary results. AJNR Am J Neuroradiol. 2022;43(1):132-138. https://doi.org/10.3174/ajnr.a7383
Tutschek B, Sinkovskaya E. Short corpus callosum in fetal Down syndrome. Ultrasound Obstet Gynecol Off J Int Soc Ultrasound Obstet Gynecol. 2020;56(3):464-465. https://doi.org/10.1002/uog.21908
Yaniv G, Katorza E, Tsehmaister Abitbol V, et al. Discrepancy in fetal head biometry between ultrasound and MRI in suspected microcephalic fetuses. Acta Radiol. 2017;58(12):1519-1527. https://doi.org/10.1177/0284185117698865
Tercanli S, Prüfer F. Fetal neurosonogaphy: ultrasound and magnetic resonance imaging in competition. Ultraschall Med Stuttg Ger. 2016;37(6):555-557. https://doi.org/10.1055/s-0042-117142
Gafner M, Fried S, Gosher N, et al. Fetal brain biometry: is there an agreement among ultrasound, MRI and the measurements at Birth? Eur J Radiol. 2020;133:109369. https://doi.org/10.1016/j.ejrad.2020.109369
Behrendt N, Zaretsky MV, West NA, Galan HL, Crombleholme TM, Meyers ML. Ultrasound versus MRI: is there a difference in measurements of the fetal lateral ventricles? J Matern-Fetal Neonatal Med Off J Eur Assoc Perinat Med Fed Asia Ocean Perinat Soc Int Soc Perinat Obstet. 2017;30(3):298-301. https://doi.org/10.3109/14767058.2016.1171310
Gelot A, Lewin F, Moraine C, et al. [Agenesis of the corpus callosum. Neuropathologic study and physiopathologic hypotheses]. Neurochirurgie. 1998;44(1 Suppl):74-84.
Atallah A, Lacalm A, Massoud M, Massardier J, Gaucherand P, Guibaud L. Prenatal diagnosis of pericallosal curvilinear lipoma: specific imaging pattern and diagnostic pitfalls. Ultrasound Obstet Gynecol. 2018;51(2):269-273. https://doi.org/10.1002/uog.17400
Chougar L, Blondiaux E, Moutard ML, et al. Variability of T1-weighted signal intensity of pericallosal lipomas in the fetus. Pediatr Radiol. 2018;48(3):383-391. https://doi.org/10.1007/s00247-017-4028-1
Rasmussen SA, Olney RS, Holmes LB, Keppler-Noreuil KM, Moore CA. Guidelines for case classification for the national Birth defects prevention study. Birt Defects Res A Clin Mol Teratol. 2003;67(3):193-201. https://doi.org/10.1002/bdra.10012
Mignot C, Moutard ML, Rastetter A, et al. ARID1B mutations are the major genetic cause of corpus callosum anomalies in patients with intellectual disability. Brain J Neurol. 2016;139(11):e64. https://doi.org/10.1093/brain/aww181
Senapati G, Levine D. Prenatal-postnatal correlations of brain abnormalities: how lesions and diagnoses change over time. J Pediatr Neuroradiol. 2012;1(3):171-184. https://doi.org/10.3233/pnr-2012-027
Kaasen A, Tuveng J, Heiberg A, Scott H, Haugen G. Correlation between prenatal ultrasound and autopsy findings: a study of second-trimester abortions. Ultrasound Obstet Gynecol Off J Int Soc Ultrasound Obstet Gynecol. 2006;28(7):925-933. https://doi.org/10.1002/uog.3871
Ozdemir O, Aksoy F, Sen C. Comparison of prenatal central nervous system abnormalities with postmortem findings in fetuses following termination of pregnancy and clinical utility of postmortem examination. J Perinat Med. 2022;50(6):769-776. https://doi.org/10.1515/jpm-2021-0501
Dhouib A, Blondiaux E, Moutard ML, et al. Correlation between pre- and postnatal cerebral magnetic resonance imaging. Ultrasound Obstet Gynecol Off J Int Soc Ultrasound Obstet Gynecol. 2011;38(2):170-178. https://doi.org/10.1002/uog.8937

Auteurs

Toan Nguyen (T)

Service de radiologie pédiatrique, Hôpital Armand-Trousseau, Médecine Sorbonne Université, APHP, DMU DIAMENT, GRC Images, Paris, France.

Solveig Heide (S)

Service de génétique médicale, Hôpital Pitié-Salpêtrière, Paris, France.

Lucie Guilbaud (L)

Service de médecine fœtale, Hôpital Armand-Trousseau, Sorbonne Université, APHP, DMU ORIGYNE, Paris, France.

Stéphanie Valence (S)

Service de neuropédiatrie, Hôpital Armand-Trousseau, Paris, France.

Saskia Vande Perre (SV)

Service de radiologie pédiatrique, Hôpital Armand-Trousseau, Médecine Sorbonne Université, APHP, DMU DIAMENT, GRC Images, Paris, France.

Eléonore Blondiaux (E)

Service de radiologie pédiatrique, Hôpital Armand-Trousseau, Médecine Sorbonne Université, APHP, DMU DIAMENT, GRC Images, Paris, France.

Boris Keren (B)

Service de génétique médicale, Hôpital Pitié-Salpêtrière, Paris, France.

Geneviève Quenum-Miraillet (G)

Service de génétique médicale, Hôpital Armand-Trousseau, Paris, France.

Jean-Marie Jouannic (JM)

Service de médecine fœtale, Hôpital Armand-Trousseau, Sorbonne Université, APHP, DMU ORIGYNE, Paris, France.

Laurent Mandelbrot (L)

Service de gynécologie obstétrique, Hôpital Louis-Mourier, Colombes, France.

Olivier Picone (O)

Service de gynécologie obstétrique, Hôpital Louis-Mourier, Colombes, France.

Agnès Guet (A)

Service de neuropédiatrie, Hôpital Louis-Mourier, Colombes, France.

Vassilis Tsatsaris (V)

Service de gynécologie obstétrique, Hôpital Cochin-Port Royal, Paris, France.

Mathieu Milh (M)

Service de neuropédiatrie, CHU de Marseille, AP-HM, Marseille, France.

Nadine Girard (N)

Service de neuroradiologie, CHU de Marseille, AP-HM, Marseille, France.

Marie Vincent (M)

Service de génétique, CHU de Nantes, Nantes, France.

Mathilde Nizon (M)

Service de génétique, CHU de Nantes, Nantes, France.

Céline Poirsier (C)

Service de génétique, CHU de Reims, Reims, France.

Alexandre Vivanti (A)

Service de gynécologie obstétrique, CHU Antoine Béclère, Clamart, France.

Alexandra Benachi (A)

Service de gynécologie obstétrique, CHU Antoine Béclère, Clamart, France.

Vincent des Portes (VD)

Service de neuropédiatrie, Hôpital Femme Mère Enfant, Lyon, France.

Laurent Guibaud (L)

Service d'imagerie pédiatrique et fœtale, Hôpital Femme Mère Enfant, Lyon, France.

Olivier Patat (O)

Service de génétique médicale, Hôpital Purpan, Toulouse, France.

Myrtille Spentchian (M)

Service de génétique médicale, Hôpital Pitié-Salpêtrière, Paris, France.

Lisa Frugère (L)

Service de génétique médicale, Hôpital Pitié-Salpêtrière, Paris, France.

Delphine Héron (D)

Service de génétique médicale, Hôpital Pitié-Salpêtrière, Paris, France.

Catherine Garel (C)

Service de radiologie pédiatrique, Hôpital Armand-Trousseau, Médecine Sorbonne Université, APHP, DMU DIAMENT, GRC Images, Paris, France.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH