Early alterations in the MCH system link aberrant neuronal activity and sleep disturbances in a mouse model of Alzheimer's disease.
Journal
Nature neuroscience
ISSN: 1546-1726
Titre abrégé: Nat Neurosci
Pays: United States
ID NLM: 9809671
Informations de publication
Date de publication:
06 2023
06 2023
Historique:
received:
06
10
2022
accepted:
10
04
2023
medline:
8
6
2023
pubmed:
16
5
2023
entrez:
15
5
2023
Statut:
ppublish
Résumé
Early Alzheimer's disease (AD) is associated with hippocampal hyperactivity and decreased sleep quality. Here we show that homeostatic mechanisms transiently counteract the increased excitatory drive to CA1 neurons in App
Identifiants
pubmed: 37188873
doi: 10.1038/s41593-023-01325-4
pii: 10.1038/s41593-023-01325-4
pmc: PMC10244178
doi:
Substances chimiques
melanin-concentrating hormone
67382-96-1
Hypothalamic Hormones
0
Pituitary Hormones
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1021-1031Informations de copyright
© 2023. The Author(s).
Références
Busche, M. A. et al. Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer’s disease. Science 321, 1686–1689 (2008).
pubmed: 18802001
doi: 10.1126/science.1162844
Dickerson, B. C. et al. Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology 65, 404–411 (2005).
pubmed: 16087905
doi: 10.1212/01.wnl.0000171450.97464.49
Baker, J., Libretto, T., Henley, W. & Zeman, A. A longitudinal study of epileptic seizures in Alzheimer’s disease. Front. Neurol. 10, 1266 (2019).
pubmed: 31866927
pmcid: 6904279
doi: 10.3389/fneur.2019.01266
Zarhin, D. et al. Disrupted neural correlates of anesthesia and sleep reveal early circuit dysfunctions in Alzheimer models. Cell Rep. 38, 110268 (2022).
pubmed: 35045289
pmcid: 8789564
doi: 10.1016/j.celrep.2021.110268
Lam, A. D. et al. Silent hippocampal seizures and spikes identified by foramen ovale electrodes in Alzheimer’s disease. Nat. Med. 23, 678–680 (2017).
pubmed: 28459436
pmcid: 5461182
doi: 10.1038/nm.4330
Mander, B. A. Local sleep and Alzheimer’s disease pathophysiology. Front. Neurosci. 14, 525970 (2020).
pubmed: 33071726
pmcid: 7538792
doi: 10.3389/fnins.2020.525970
Nakazono, T. et al. Impaired in vivo gamma oscillations in the medial entorhinal cortex of knock-in Alzheimer model. Front. Syst. Neurosci. 11, 48 (2017).
pubmed: 28713250
pmcid: 5491963
doi: 10.3389/fnsys.2017.00048
Musiek, E. S. et al. Targeting sleep and circadian function in the prevention of Alzheimer disease. JAMA Neurol. https://doi.org/10.1001/jamaneurol.2022.1732 (2022).
Davis, G. W. Homeostatic control of neural activity: from phenomenology to molecular design. Annu. Rev. Neurosci. 29, 307–323 (2006).
pubmed: 16776588
doi: 10.1146/annurev.neuro.28.061604.135751
Styr, B. & Slutsky, I. Imbalance between firing homeostasis and synaptic plasticity drives early-phase Alzheimer’s disease. Nat. Neurosci. https://doi.org/10.1038/s41593-018-0080-x (2018).
De Vivo, L. et al. Ultrastructural evidence for synaptic scaling across the wake/sleep cycle. Science 355, 507–510 (2017).
pubmed: 28154076
pmcid: 5313037
doi: 10.1126/science.aah5982
Liu, Z.-W., Faraguna, U., Cirelli, C., Tononi, G. & Gao, X.-B. Direct eidence for wake-related increases and sleep-related decreases in synaptic strength in rodent cortex. J. Neurosci. 30, 8671–8675 (2010).
pubmed: 20573912
pmcid: 2903226
doi: 10.1523/JNEUROSCI.1409-10.2010
Bridi, M. C. D. et al. Daily oscillation of the excitation–inhibition balance in visual cortical circuits. Neuron 105, 621–629 (2020).
pubmed: 31831331
doi: 10.1016/j.neuron.2019.11.011
Diering, G. H. et al. Homer1a drives homeostatic scaling-down of excitatory synapses during sleep. Science 355, 511–515 (2017).
pubmed: 28154077
pmcid: 5382711
doi: 10.1126/science.aai8355
Vyazovskiy, V. V., Cirelli, C., Pfister-Genskow, M., Faraguna, U. & Tononi, G. Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nat. Neurosci. 11, 200–208 (2008).
pubmed: 18204445
doi: 10.1038/nn2035
Grosmark, A. D., Mizuseki, K., Pastalkova, E., Diba, K. & Buzsáki, G. REM sleep reorganizes hippocampal excitability. Neuron 75, 1001–1007 (2012).
pubmed: 22998869
pmcid: 3608095
doi: 10.1016/j.neuron.2012.08.015
Torrado Pacheco, A., Bottorff, J., Gao, Y. & Turrigiano, G. G. Sleep promotes downward firing rate homeostasis. Neuron https://doi.org/10.1016/j.neuron.2020.11.001 (2020).
Jego, S. et al. Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat. Neurosci. https://doi.org/10.1038/nn.3522 (2013).
Verret, L. et al. A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep. BMC Neurosci. 4, 19 (2003).
pubmed: 12964948
pmcid: 201018
doi: 10.1186/1471-2202-4-19
Izawa, S. et al. REM sleep-active MCH neurons are involved in forgetting hippocampusdependent memories. Science 365, 1308–1313 (2019).
pubmed: 31604241
pmcid: 7378274
doi: 10.1126/science.aax9238
Palop, J. J. et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron 55, 697–711 (2007).
pubmed: 17785178
pmcid: 8055171
doi: 10.1016/j.neuron.2007.07.025
Johnson, E. C. B. et al. Behavioral and neural network abnormalities in human APP transgenic mice resemble those of App knock-in mice and are modulated by familial Alzheimer’s disease mutations but not by inhibition of BACE1. Mol. Neurodegener. 15, 53 (2020).
pubmed: 32921309
pmcid: 7489007
doi: 10.1186/s13024-020-00393-5
Turrigiano, G. G., Leslie, K. R., Desai, N. S., Rutherford, L. C. & Nelson, S. B. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391, 892–896 (1998).
pubmed: 9495341
doi: 10.1038/36103
Turrigiano, G. G. The dialectic of Hebb and homeostasis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160258 (2017).
pubmed: 28093556
pmcid: 5247594
doi: 10.1098/rstb.2016.0258
Keck, T. et al. Integrating Hebbian and homeostatic plasticity: the current state of the field and future research directions. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160158 (2017).
pubmed: 28093552
pmcid: 5247590
doi: 10.1098/rstb.2016.0158
Chen, W. T. et al. Spatial transcriptomics and in situ sequencing to study Alzheimer’s disease. Cell 182, 976–991 (2020).
pubmed: 32702314
doi: 10.1016/j.cell.2020.06.038
Schaukowitch, K. et al. An intrinsic transcriptional program underlying synaptic scaling during activity suppression. Cell Rep. 18, 1512–1526 (2017).
pubmed: 28178527
pmcid: 5524384
doi: 10.1016/j.celrep.2017.01.033
Oostrum, M. van, et al. Surface proteome dynamics during neuronal development and synaptic plasticity. Nat. Commun. 11, 4990 (2020).
Butko, M. T. et al. In vivo quantitative proteomics of somatosensory cortical synapses shows which protein levels are modulated by sensory deprivation. Proc. Natl Acad. Sci. USA 110, E726–E735 (2013).
pubmed: 23382246
pmcid: 3581967
doi: 10.1073/pnas.1300424110
Hrvatin, S. et al. Single-cell analysis of experience-dependent transcriptomic states in the mouse visual cortex. Nat. Neurosci. 21, 120–129 (2018).
pubmed: 29230054
doi: 10.1038/s41593-017-0029-5
Fu, A. K. Y. et al. APCCdh1 mediates EphA4-dependent downregulation of AMPA receptors in homeostatic plasticity. Nat. Neurosci. 14, 181–191 (2011).
pubmed: 21186356
doi: 10.1038/nn.2715
Diniz, G. B. & Bittencourt, J. C. The melanin-concentrating hormone as an integrative peptide driving motivated behaviors. Front. Syst. Neurosci. 11, 32 (2017).
pubmed: 28611599
pmcid: 5447028
doi: 10.3389/fnsys.2017.00032
Bittencourt, J. C. et al. The melanin-concentrating hormone system of the rat brain: an immuno- and hybridization histochemical characterization. J. Comp. Neurol. 319, 218–245 (1992).
pubmed: 1522246
doi: 10.1002/cne.903190204
Pachoud, B. et al. Major impairments of glutamatergic transmission and long-term synaptic plasticity in the hippocampus of mice lacking the melanin-concentrating hormone receptor-1. J. Neurophysiol. 104, 1417–1425 (2010).
pubmed: 20592115
pmcid: 4073994
doi: 10.1152/jn.01052.2009
Adamantidis, A. et al. Disrupting the melanin-concentrating hormone receptor 1 in mice leads to cognitive deficits and alterations of NMDA receptor function. Eur. J. Neurosci. 21, 2837–2844 (2005).
pubmed: 15926931
doi: 10.1111/j.1460-9568.2005.04100.x
Monzon, M. E. et al. Melanin-concentrating hormone modifies memory retention in rats. Peptides 20, 1517–1519 (1999).
pubmed: 10698129
doi: 10.1016/S0196-9781(99)00164-3
Varas, M., Pérez, M., Monzón, M. E. & de Barioglio, S. R. Melanin-concentrating hormone, hippocampal nitric oxide levels and memory retention. Peptides 23, 2213–2221 (2002).
pubmed: 12535701
doi: 10.1016/S0196-9781(02)00252-8
Kosse, C. & Burdakov, D. Natural hypothalamic circuit dynamics underlying object memorization. Nat. Commun. 10, 2505 (2019).
pubmed: 31175285
pmcid: 6555780
doi: 10.1038/s41467-019-10484-7
Monzón, M. E. & De Barioglio, S. R. Response to novelty after i.c.v. injection of melanin-concentrating hormone (MCH) in rats. Physiol. Behav. 67, 813–817 (1999).
pubmed: 10604856
doi: 10.1016/S0031-9384(99)00117-1
Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–1014 (2018).
pubmed: 30096314
pmcid: 6086934
doi: 10.1016/j.cell.2018.06.021
Slomowitz, E. et al. Interplay between population firing stability and single neuron dynamics in hippocampal networks. Elife 4, e04378 (2015).
pubmed: 25556699
pmcid: 4311497
doi: 10.7554/eLife.04378
Styr, B. et al. Mitochondrial regulation of the hippocampal firing rate set point and seizure susceptibility. Neuron 102, 1009–1024 (2019).
pubmed: 31047779
pmcid: 6559804
doi: 10.1016/j.neuron.2019.03.045
Lisman, J., Cooper, K., Sehgal, M. & Silva, A. J. Memory formation depends on both synapse-specific modifications of synaptic strength and cell-specific increases in excitability. Nat. Neurosci. 21, 309–314 (2018).
pubmed: 29434376
pmcid: 5915620
doi: 10.1038/s41593-018-0076-6
Chen, Y. et al. Activity-induced Nr4a1 regulates spine density and distribution pattern of excitatory synapses in pyramidal neurons. Neuron 83, 431–443 (2014).
pubmed: 24976215
doi: 10.1016/j.neuron.2014.05.027
Spiegel, I. et al. Npas4 regulates excitatory–inhibitory balance within neural circuits through cell-type-specific gene programs. Cell 157, 1216–1229 (2014).
pubmed: 24855953
pmcid: 4089405
doi: 10.1016/j.cell.2014.03.058
Shepherd, J. D. et al. Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. Neuron 52, 475–484 (2006).
pubmed: 17088213
pmcid: 1764219
doi: 10.1016/j.neuron.2006.08.034
Chen, C., Magee, J. C. & Bazan, N. G. Cyclooxygenase-2 regulates prostaglandin E2 signaling in hippocampal long-term synaptic plasticity. J. Neurophysiol. 87, 2851–2857 (2002).
pubmed: 12037188
doi: 10.1152/jn.2002.87.6.2851
Leal, G., Afonso, P. M., Salazar, I. L. & Duarte, C. B. Regulation of hippocampal synaptic plasticity by BDNF. Brain Res. 1621, 82–101 (2015).
pubmed: 25451089
doi: 10.1016/j.brainres.2014.10.019
Gordon, R. et al. Prokineticin-2 upregulation during neuronal injury mediates a compensatory protective response against dopaminergic neuronal degeneration. Nat. Commun. 7, 12932 (2016).
pubmed: 27703142
pmcid: 5059486
doi: 10.1038/ncomms12932
Pröschel, C. et al. Epilepsy-causing sequence variations in SIK1 disrupt synaptic activity response gene expression and affect neuronal morphology. Eur. J. Hum. Genet. 25, 216–221 (2017).
pubmed: 27966542
doi: 10.1038/ejhg.2016.145
Thongrong, S. et al. Sprouty2 and -4 hypomorphism promotes neuronal survival and astrocytosis in a mouse model of kainic acid induced neuronal damage. Hippocampus 26, 658–667 (2016).
pubmed: 26540287
doi: 10.1002/hipo.22549
Strauss, K. I. & Marini, A. M. Cyclooxygenase-2 inhibition protects cultured cerebellar granule neurons from glutamate-mediated cell death. J. Neurotrauma 19, 627–638 (2002).
pubmed: 12042097
doi: 10.1089/089771502753754091
Laezza, F., Wilding, T. J., Sequeira, S., Craig, A. M. & Huettner, J. E. The BTB/kelch protein, KRIP6, modulates the interaction of PICK1 with GluR6 kainate receptors. Neuropharmacology 55, 1131–1139 (2008).
pubmed: 18692513
pmcid: 2685165
doi: 10.1016/j.neuropharm.2008.07.021
Hassani, O. K., Lee, M. G. & Jones, B. E. Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep–wake cycle. Proc. Natl Acad. Sci. USA 106, 2418–2422 (2009).
pubmed: 19188611
pmcid: 2650171
doi: 10.1073/pnas.0811400106
Adamantidis, A. R., Zhang, F., Aravanis, A. M., Deisseroth, K. & De Lecea, L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450, 420–424 (2007).
pubmed: 17943086
pmcid: 6744371
doi: 10.1038/nature06310
Konadhode, R. R. et al. Optogenetic stimulation of MCH neurons increases sleep. J. Neurosci. 33, 10257–10263 (2013).
pubmed: 23785141
pmcid: 3685832
doi: 10.1523/JNEUROSCI.1225-13.2013
Vetrivelan, R. et al. Melanin-concentrating hormone neurons specifically promote rapid eye movement sleep in mice. Neuroscience 336, 102–113 (2016).
pubmed: 27595887
doi: 10.1016/j.neuroscience.2016.08.046
Tsunematsu, T. et al. Optogenetic manipulation of activity and temporally controlled cell-specific ablation reveal a role for MCH neurons in sleep/wake. Regulation 34, 6896–6909 (2014).
Maezono, S. E. B. et al. Progressive changes in sleep and its relations to amyloid-β distribution and learning in single App knock-in mice. eneuro 7, https://doi.org/10.1523/ENEURO.0093-20.2020 (2020).
Tobler, I. & Borbély, A. A. Sleep EEG in the rat as a function of prior waking. Electroencephalogr. Clin. Neurophysiol. 64, 74–76 (1986).
pubmed: 2424723
doi: 10.1016/0013-4694(86)90044-1
Sabetghadam, A. et al. Melanin-concentrating hormone and orexin systems in rat nucleus incertus: dual innervation, bidirectional effects on neuron activity, and differential influences on arousal and feeding. Neuropharmacology 139, 238–256 (2018).
pubmed: 29981758
doi: 10.1016/j.neuropharm.2018.07.004
Phinney, A. L. et al. Cerebral amyloid induces aberrant axonal sprouting and ectopic terminal formation in amyloid precursor protein transgenic mice. J. Neurosci. 19, 8552–8559 (1999).
pubmed: 10493755
pmcid: 6783025
doi: 10.1523/JNEUROSCI.19-19-08552.1999
Blanco-Centurion, C. et al. Dynamic network activation of hypothalamic MCH neurons in REM sleep and exploratory behavior. J. Neurosci. 39, 4986–4998 (2019).
pubmed: 31036764
pmcid: 6670248
doi: 10.1523/JNEUROSCI.0305-19.2019
Harris, J., Concetti, C., Peleg-Raibstein, D. & Burdakov, D. A role for MCH neuron firing in hippocampal plasticity and learning. Preprint at bioRxiv https://doi.org/10.1101/2022.12.01.518339 (2022).
Alhassen, W. et al. Regulation of brain primary cilia length by MCH signaling: evidence from pharmacological, genetic, optogenetic and chemogenic manipulations. Mol. Neurobiol. 59, 245–265 (2022).
pubmed: 34665407
doi: 10.1007/s12035-021-02511-w
Sears, R. M. et al. Regulation of nucleus accumbens activity by the hypothalamic neuropeptide melanin-concentrating hormone. J. Neurosci. 30, 8263–8273 (2010).
pubmed: 20554878
pmcid: 2907886
doi: 10.1523/JNEUROSCI.5858-09.2010
Gao, X. B. & Van Den Pol, A. N. Melanin concentrating hormone depresses synaptic activity of glutamate and GABA neurons from rat lateral hypothalamus. J. Physiol. 533, 237–252 (2001).
pubmed: 11351031
pmcid: 2278620
doi: 10.1111/j.1469-7793.2001.0237b.x
Liu, J. J., Tsien, R. W. & Pang, Z. P. Hypothalamic melanin-concentrating hormone regulates hippocampus-dorsolateral septum activity. Nat. Neurosci. 25, 61–71 (2022).
pubmed: 34980924
pmcid: 8741735
doi: 10.1038/s41593-021-00984-5
Klinzing, J. G., Niethard, N. & Born, J. Mechanisms of systems memory consolidation during sleep. Nat. Neurosci. 22, 1598–1610 (2019).
pubmed: 31451802
doi: 10.1038/s41593-019-0467-3
Pase, M. P. et al. Author response: sleep architecture and the risk of incident dementia in the community. Neurology 90, 487 (2018).
pubmed: 29507137
doi: 10.1212/WNL.0000000000005047
Yuan, P. et al. PLD3 affects axonal spheroids and network defects in Alzheimer’s disease. Nature 612, 328–337 (2022).
pubmed: 36450991
pmcid: 9729106
doi: 10.1038/s41586-022-05491-6
Shah, D. et al. Astrocyte calcium dysfunction causes early network hyperactivity in Alzheimer’s disease. Cell Rep. 40, 111280 (2022).
Frere, S. & Slutsky, I. Alzheimer’s disease: from firing instability to homeostasis network collapse. Neuron 97, 32–58 (2018).
pubmed: 29301104
doi: 10.1016/j.neuron.2017.11.028
Oh, S. T. et al. Nasal cavity administration of melanin-concentrating hormone improves memory impairment in memory-impaired and Alzheimer’s disease mouse models. Mol. Neurobiol. 56, 8076–8086 (2019).
pubmed: 31183806
doi: 10.1007/s12035-019-01662-1
Takase, K. et al. Meta-analysis of melanin-concentrating hormone signaling-deficient mice on behavioral and metabolic phenotypes. PLoS ONE 9, e99961 (2014).
pubmed: 24924345
pmcid: 4055708
doi: 10.1371/journal.pone.0099961
Thannickal, T. C., Lai, Y. Y. & Siegel, J. M. Hypocretin (orexin) cell loss in Parkinson’s disease. Brain 130, 1586–1595 (2007).
pubmed: 17491094
doi: 10.1093/brain/awm097
Severinsen, J. E. et al. Association analyses suggest GPR24 as a shared susceptibility gene for bipolar affective disorder and schizophrenia. Am. J. Med. Genet. B Neuropsychiatr. Genet. 141, 524–533 (2006).
doi: 10.1002/ajmg.b.30335
Mullins, N. et al. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat. Genet. 53, 817–829 (2021).
pubmed: 34002096
pmcid: 8192451
doi: 10.1038/s41588-021-00857-4
Saito, T. et al. Single App knock-in mouse models of Alzheimer’s disease. Nat. Neurosci. 17, 661–663 (2014).
pubmed: 24728269
doi: 10.1038/nn.3697
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).
pubmed: 29608179
pmcid: 6700744
doi: 10.1038/nbt.4096
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2009).
pubmed: 19910308
pmcid: 2796818
doi: 10.1093/bioinformatics/btp616
Eden, E., Navon, R., Steinfeld, I., Lipson, D. & Yakhini, Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10, 48 (2009).
pubmed: 19192299
pmcid: 2644678
doi: 10.1186/1471-2105-10-48
Koopmans, F. et al. SynGO: an evidence-based, expert-curated knowledge base for the synapse. Neuron 103, 217–234 (2019).
pubmed: 31171447
pmcid: 6764089
doi: 10.1016/j.neuron.2019.05.002
Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991).
pubmed: 1759558
doi: 10.1007/BF00308809
Thal, D. R. et al. Sequence of Aβ-protein deposition in the human medial temporal lobe. J. Neuropathol. Exp. Neurol. 59, 733–748 (2000).
pubmed: 10952063
doi: 10.1093/jnen/59.8.733
Hyman, B. T. et al. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement. 8, 1–13 (2012).
pubmed: 22265587
pmcid: 3266529
doi: 10.1016/j.jalz.2011.10.007
Ding, G. et al. REV-ERB in GABAergic neurons controls diurnal hepatic insulin sensitivity. Nature 592, 763–767 (2021).
pubmed: 33762728
pmcid: 8085086
doi: 10.1038/s41586-021-03358-w
Verret, L. et al. A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep. BMC Neurosci. 4, 19 (2003).
pubmed: 12964948
pmcid: 201018
doi: 10.1186/1471-2202-4-19
Roberson, E. D. et al. Amyloid-β/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer’s disease. J. Neurosci. 31, 700–711 (2011).
pubmed: 21228179
pmcid: 3325794
doi: 10.1523/JNEUROSCI.4152-10.2011