Early alterations in the MCH system link aberrant neuronal activity and sleep disturbances in a mouse model of Alzheimer's disease.


Journal

Nature neuroscience
ISSN: 1546-1726
Titre abrégé: Nat Neurosci
Pays: United States
ID NLM: 9809671

Informations de publication

Date de publication:
06 2023
Historique:
received: 06 10 2022
accepted: 10 04 2023
medline: 8 6 2023
pubmed: 16 5 2023
entrez: 15 5 2023
Statut: ppublish

Résumé

Early Alzheimer's disease (AD) is associated with hippocampal hyperactivity and decreased sleep quality. Here we show that homeostatic mechanisms transiently counteract the increased excitatory drive to CA1 neurons in App

Identifiants

pubmed: 37188873
doi: 10.1038/s41593-023-01325-4
pii: 10.1038/s41593-023-01325-4
pmc: PMC10244178
doi:

Substances chimiques

melanin-concentrating hormone 67382-96-1
Hypothalamic Hormones 0
Pituitary Hormones 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1021-1031

Informations de copyright

© 2023. The Author(s).

Références

Busche, M. A. et al. Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer’s disease. Science 321, 1686–1689 (2008).
pubmed: 18802001 doi: 10.1126/science.1162844
Dickerson, B. C. et al. Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology 65, 404–411 (2005).
pubmed: 16087905 doi: 10.1212/01.wnl.0000171450.97464.49
Baker, J., Libretto, T., Henley, W. & Zeman, A. A longitudinal study of epileptic seizures in Alzheimer’s disease. Front. Neurol. 10, 1266 (2019).
pubmed: 31866927 pmcid: 6904279 doi: 10.3389/fneur.2019.01266
Zarhin, D. et al. Disrupted neural correlates of anesthesia and sleep reveal early circuit dysfunctions in Alzheimer models. Cell Rep. 38, 110268 (2022).
pubmed: 35045289 pmcid: 8789564 doi: 10.1016/j.celrep.2021.110268
Lam, A. D. et al. Silent hippocampal seizures and spikes identified by foramen ovale electrodes in Alzheimer’s disease. Nat. Med. 23, 678–680 (2017).
pubmed: 28459436 pmcid: 5461182 doi: 10.1038/nm.4330
Mander, B. A. Local sleep and Alzheimer’s disease pathophysiology. Front. Neurosci. 14, 525970 (2020).
pubmed: 33071726 pmcid: 7538792 doi: 10.3389/fnins.2020.525970
Nakazono, T. et al. Impaired in vivo gamma oscillations in the medial entorhinal cortex of knock-in Alzheimer model. Front. Syst. Neurosci. 11, 48 (2017).
pubmed: 28713250 pmcid: 5491963 doi: 10.3389/fnsys.2017.00048
Musiek, E. S. et al. Targeting sleep and circadian function in the prevention of Alzheimer disease. JAMA Neurol. https://doi.org/10.1001/jamaneurol.2022.1732 (2022).
Davis, G. W. Homeostatic control of neural activity: from phenomenology to molecular design. Annu. Rev. Neurosci. 29, 307–323 (2006).
pubmed: 16776588 doi: 10.1146/annurev.neuro.28.061604.135751
Styr, B. & Slutsky, I. Imbalance between firing homeostasis and synaptic plasticity drives early-phase Alzheimer’s disease. Nat. Neurosci. https://doi.org/10.1038/s41593-018-0080-x (2018).
De Vivo, L. et al. Ultrastructural evidence for synaptic scaling across the wake/sleep cycle. Science 355, 507–510 (2017).
pubmed: 28154076 pmcid: 5313037 doi: 10.1126/science.aah5982
Liu, Z.-W., Faraguna, U., Cirelli, C., Tononi, G. & Gao, X.-B. Direct eidence for wake-related increases and sleep-related decreases in synaptic strength in rodent cortex. J. Neurosci. 30, 8671–8675 (2010).
pubmed: 20573912 pmcid: 2903226 doi: 10.1523/JNEUROSCI.1409-10.2010
Bridi, M. C. D. et al. Daily oscillation of the excitation–inhibition balance in visual cortical circuits. Neuron 105, 621–629 (2020).
pubmed: 31831331 doi: 10.1016/j.neuron.2019.11.011
Diering, G. H. et al. Homer1a drives homeostatic scaling-down of excitatory synapses during sleep. Science 355, 511–515 (2017).
pubmed: 28154077 pmcid: 5382711 doi: 10.1126/science.aai8355
Vyazovskiy, V. V., Cirelli, C., Pfister-Genskow, M., Faraguna, U. & Tononi, G. Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nat. Neurosci. 11, 200–208 (2008).
pubmed: 18204445 doi: 10.1038/nn2035
Grosmark, A. D., Mizuseki, K., Pastalkova, E., Diba, K. & Buzsáki, G. REM sleep reorganizes hippocampal excitability. Neuron 75, 1001–1007 (2012).
pubmed: 22998869 pmcid: 3608095 doi: 10.1016/j.neuron.2012.08.015
Torrado Pacheco, A., Bottorff, J., Gao, Y. & Turrigiano, G. G. Sleep promotes downward firing rate homeostasis. Neuron https://doi.org/10.1016/j.neuron.2020.11.001 (2020).
Jego, S. et al. Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat. Neurosci. https://doi.org/10.1038/nn.3522 (2013).
Verret, L. et al. A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep. BMC Neurosci. 4, 19 (2003).
pubmed: 12964948 pmcid: 201018 doi: 10.1186/1471-2202-4-19
Izawa, S. et al. REM sleep-active MCH neurons are involved in forgetting hippocampusdependent memories. Science 365, 1308–1313 (2019).
pubmed: 31604241 pmcid: 7378274 doi: 10.1126/science.aax9238
Palop, J. J. et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron 55, 697–711 (2007).
pubmed: 17785178 pmcid: 8055171 doi: 10.1016/j.neuron.2007.07.025
Johnson, E. C. B. et al. Behavioral and neural network abnormalities in human APP transgenic mice resemble those of App knock-in mice and are modulated by familial Alzheimer’s disease mutations but not by inhibition of BACE1. Mol. Neurodegener. 15, 53 (2020).
pubmed: 32921309 pmcid: 7489007 doi: 10.1186/s13024-020-00393-5
Turrigiano, G. G., Leslie, K. R., Desai, N. S., Rutherford, L. C. & Nelson, S. B. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391, 892–896 (1998).
pubmed: 9495341 doi: 10.1038/36103
Turrigiano, G. G. The dialectic of Hebb and homeostasis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160258 (2017).
pubmed: 28093556 pmcid: 5247594 doi: 10.1098/rstb.2016.0258
Keck, T. et al. Integrating Hebbian and homeostatic plasticity: the current state of the field and future research directions. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160158 (2017).
pubmed: 28093552 pmcid: 5247590 doi: 10.1098/rstb.2016.0158
Chen, W. T. et al. Spatial transcriptomics and in situ sequencing to study Alzheimer’s disease. Cell 182, 976–991 (2020).
pubmed: 32702314 doi: 10.1016/j.cell.2020.06.038
Schaukowitch, K. et al. An intrinsic transcriptional program underlying synaptic scaling during activity suppression. Cell Rep. 18, 1512–1526 (2017).
pubmed: 28178527 pmcid: 5524384 doi: 10.1016/j.celrep.2017.01.033
Oostrum, M. van, et al. Surface proteome dynamics during neuronal development and synaptic plasticity. Nat. Commun. 11, 4990 (2020).
Butko, M. T. et al. In vivo quantitative proteomics of somatosensory cortical synapses shows which protein levels are modulated by sensory deprivation. Proc. Natl Acad. Sci. USA 110, E726–E735 (2013).
pubmed: 23382246 pmcid: 3581967 doi: 10.1073/pnas.1300424110
Hrvatin, S. et al. Single-cell analysis of experience-dependent transcriptomic states in the mouse visual cortex. Nat. Neurosci. 21, 120–129 (2018).
pubmed: 29230054 doi: 10.1038/s41593-017-0029-5
Fu, A. K. Y. et al. APCCdh1 mediates EphA4-dependent downregulation of AMPA receptors in homeostatic plasticity. Nat. Neurosci. 14, 181–191 (2011).
pubmed: 21186356 doi: 10.1038/nn.2715
Diniz, G. B. & Bittencourt, J. C. The melanin-concentrating hormone as an integrative peptide driving motivated behaviors. Front. Syst. Neurosci. 11, 32 (2017).
pubmed: 28611599 pmcid: 5447028 doi: 10.3389/fnsys.2017.00032
Bittencourt, J. C. et al. The melanin-concentrating hormone system of the rat brain: an immuno- and hybridization histochemical characterization. J. Comp. Neurol. 319, 218–245 (1992).
pubmed: 1522246 doi: 10.1002/cne.903190204
Pachoud, B. et al. Major impairments of glutamatergic transmission and long-term synaptic plasticity in the hippocampus of mice lacking the melanin-concentrating hormone receptor-1. J. Neurophysiol. 104, 1417–1425 (2010).
pubmed: 20592115 pmcid: 4073994 doi: 10.1152/jn.01052.2009
Adamantidis, A. et al. Disrupting the melanin-concentrating hormone receptor 1 in mice leads to cognitive deficits and alterations of NMDA receptor function. Eur. J. Neurosci. 21, 2837–2844 (2005).
pubmed: 15926931 doi: 10.1111/j.1460-9568.2005.04100.x
Monzon, M. E. et al. Melanin-concentrating hormone modifies memory retention in rats. Peptides 20, 1517–1519 (1999).
pubmed: 10698129 doi: 10.1016/S0196-9781(99)00164-3
Varas, M., Pérez, M., Monzón, M. E. & de Barioglio, S. R. Melanin-concentrating hormone, hippocampal nitric oxide levels and memory retention. Peptides 23, 2213–2221 (2002).
pubmed: 12535701 doi: 10.1016/S0196-9781(02)00252-8
Kosse, C. & Burdakov, D. Natural hypothalamic circuit dynamics underlying object memorization. Nat. Commun. 10, 2505 (2019).
pubmed: 31175285 pmcid: 6555780 doi: 10.1038/s41467-019-10484-7
Monzón, M. E. & De Barioglio, S. R. Response to novelty after i.c.v. injection of melanin-concentrating hormone (MCH) in rats. Physiol. Behav. 67, 813–817 (1999).
pubmed: 10604856 doi: 10.1016/S0031-9384(99)00117-1
Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–1014 (2018).
pubmed: 30096314 pmcid: 6086934 doi: 10.1016/j.cell.2018.06.021
Slomowitz, E. et al. Interplay between population firing stability and single neuron dynamics in hippocampal networks. Elife 4, e04378 (2015).
pubmed: 25556699 pmcid: 4311497 doi: 10.7554/eLife.04378
Styr, B. et al. Mitochondrial regulation of the hippocampal firing rate set point and seizure susceptibility. Neuron 102, 1009–1024 (2019).
pubmed: 31047779 pmcid: 6559804 doi: 10.1016/j.neuron.2019.03.045
Lisman, J., Cooper, K., Sehgal, M. & Silva, A. J. Memory formation depends on both synapse-specific modifications of synaptic strength and cell-specific increases in excitability. Nat. Neurosci. 21, 309–314 (2018).
pubmed: 29434376 pmcid: 5915620 doi: 10.1038/s41593-018-0076-6
Chen, Y. et al. Activity-induced Nr4a1 regulates spine density and distribution pattern of excitatory synapses in pyramidal neurons. Neuron 83, 431–443 (2014).
pubmed: 24976215 doi: 10.1016/j.neuron.2014.05.027
Spiegel, I. et al. Npas4 regulates excitatory–inhibitory balance within neural circuits through cell-type-specific gene programs. Cell 157, 1216–1229 (2014).
pubmed: 24855953 pmcid: 4089405 doi: 10.1016/j.cell.2014.03.058
Shepherd, J. D. et al. Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. Neuron 52, 475–484 (2006).
pubmed: 17088213 pmcid: 1764219 doi: 10.1016/j.neuron.2006.08.034
Chen, C., Magee, J. C. & Bazan, N. G. Cyclooxygenase-2 regulates prostaglandin E2 signaling in hippocampal long-term synaptic plasticity. J. Neurophysiol. 87, 2851–2857 (2002).
pubmed: 12037188 doi: 10.1152/jn.2002.87.6.2851
Leal, G., Afonso, P. M., Salazar, I. L. & Duarte, C. B. Regulation of hippocampal synaptic plasticity by BDNF. Brain Res. 1621, 82–101 (2015).
pubmed: 25451089 doi: 10.1016/j.brainres.2014.10.019
Gordon, R. et al. Prokineticin-2 upregulation during neuronal injury mediates a compensatory protective response against dopaminergic neuronal degeneration. Nat. Commun. 7, 12932 (2016).
pubmed: 27703142 pmcid: 5059486 doi: 10.1038/ncomms12932
Pröschel, C. et al. Epilepsy-causing sequence variations in SIK1 disrupt synaptic activity response gene expression and affect neuronal morphology. Eur. J. Hum. Genet. 25, 216–221 (2017).
pubmed: 27966542 doi: 10.1038/ejhg.2016.145
Thongrong, S. et al. Sprouty2 and -4 hypomorphism promotes neuronal survival and astrocytosis in a mouse model of kainic acid induced neuronal damage. Hippocampus 26, 658–667 (2016).
pubmed: 26540287 doi: 10.1002/hipo.22549
Strauss, K. I. & Marini, A. M. Cyclooxygenase-2 inhibition protects cultured cerebellar granule neurons from glutamate-mediated cell death. J. Neurotrauma 19, 627–638 (2002).
pubmed: 12042097 doi: 10.1089/089771502753754091
Laezza, F., Wilding, T. J., Sequeira, S., Craig, A. M. & Huettner, J. E. The BTB/kelch protein, KRIP6, modulates the interaction of PICK1 with GluR6 kainate receptors. Neuropharmacology 55, 1131–1139 (2008).
pubmed: 18692513 pmcid: 2685165 doi: 10.1016/j.neuropharm.2008.07.021
Hassani, O. K., Lee, M. G. & Jones, B. E. Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep–wake cycle. Proc. Natl Acad. Sci. USA 106, 2418–2422 (2009).
pubmed: 19188611 pmcid: 2650171 doi: 10.1073/pnas.0811400106
Adamantidis, A. R., Zhang, F., Aravanis, A. M., Deisseroth, K. & De Lecea, L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450, 420–424 (2007).
pubmed: 17943086 pmcid: 6744371 doi: 10.1038/nature06310
Konadhode, R. R. et al. Optogenetic stimulation of MCH neurons increases sleep. J. Neurosci. 33, 10257–10263 (2013).
pubmed: 23785141 pmcid: 3685832 doi: 10.1523/JNEUROSCI.1225-13.2013
Vetrivelan, R. et al. Melanin-concentrating hormone neurons specifically promote rapid eye movement sleep in mice. Neuroscience 336, 102–113 (2016).
pubmed: 27595887 doi: 10.1016/j.neuroscience.2016.08.046
Tsunematsu, T. et al. Optogenetic manipulation of activity and temporally controlled cell-specific ablation reveal a role for MCH neurons in sleep/wake. Regulation 34, 6896–6909 (2014).
Maezono, S. E. B. et al. Progressive changes in sleep and its relations to amyloid-β distribution and learning in single App knock-in mice. eneuro 7, https://doi.org/10.1523/ENEURO.0093-20.2020 (2020).
Tobler, I. & Borbély, A. A. Sleep EEG in the rat as a function of prior waking. Electroencephalogr. Clin. Neurophysiol. 64, 74–76 (1986).
pubmed: 2424723 doi: 10.1016/0013-4694(86)90044-1
Sabetghadam, A. et al. Melanin-concentrating hormone and orexin systems in rat nucleus incertus: dual innervation, bidirectional effects on neuron activity, and differential influences on arousal and feeding. Neuropharmacology 139, 238–256 (2018).
pubmed: 29981758 doi: 10.1016/j.neuropharm.2018.07.004
Phinney, A. L. et al. Cerebral amyloid induces aberrant axonal sprouting and ectopic terminal formation in amyloid precursor protein transgenic mice. J. Neurosci. 19, 8552–8559 (1999).
pubmed: 10493755 pmcid: 6783025 doi: 10.1523/JNEUROSCI.19-19-08552.1999
Blanco-Centurion, C. et al. Dynamic network activation of hypothalamic MCH neurons in REM sleep and exploratory behavior. J. Neurosci. 39, 4986–4998 (2019).
pubmed: 31036764 pmcid: 6670248 doi: 10.1523/JNEUROSCI.0305-19.2019
Harris, J., Concetti, C., Peleg-Raibstein, D. & Burdakov, D. A role for MCH neuron firing in hippocampal plasticity and learning. Preprint at bioRxiv https://doi.org/10.1101/2022.12.01.518339 (2022).
Alhassen, W. et al. Regulation of brain primary cilia length by MCH signaling: evidence from pharmacological, genetic, optogenetic and chemogenic manipulations. Mol. Neurobiol. 59, 245–265 (2022).
pubmed: 34665407 doi: 10.1007/s12035-021-02511-w
Sears, R. M. et al. Regulation of nucleus accumbens activity by the hypothalamic neuropeptide melanin-concentrating hormone. J. Neurosci. 30, 8263–8273 (2010).
pubmed: 20554878 pmcid: 2907886 doi: 10.1523/JNEUROSCI.5858-09.2010
Gao, X. B. & Van Den Pol, A. N. Melanin concentrating hormone depresses synaptic activity of glutamate and GABA neurons from rat lateral hypothalamus. J. Physiol. 533, 237–252 (2001).
pubmed: 11351031 pmcid: 2278620 doi: 10.1111/j.1469-7793.2001.0237b.x
Liu, J. J., Tsien, R. W. & Pang, Z. P. Hypothalamic melanin-concentrating hormone regulates hippocampus-dorsolateral septum activity. Nat. Neurosci. 25, 61–71 (2022).
pubmed: 34980924 pmcid: 8741735 doi: 10.1038/s41593-021-00984-5
Klinzing, J. G., Niethard, N. & Born, J. Mechanisms of systems memory consolidation during sleep. Nat. Neurosci. 22, 1598–1610 (2019).
pubmed: 31451802 doi: 10.1038/s41593-019-0467-3
Pase, M. P. et al. Author response: sleep architecture and the risk of incident dementia in the community. Neurology 90, 487 (2018).
pubmed: 29507137 doi: 10.1212/WNL.0000000000005047
Yuan, P. et al. PLD3 affects axonal spheroids and network defects in Alzheimer’s disease. Nature 612, 328–337 (2022).
pubmed: 36450991 pmcid: 9729106 doi: 10.1038/s41586-022-05491-6
Shah, D. et al. Astrocyte calcium dysfunction causes early network hyperactivity in Alzheimer’s disease. Cell Rep. 40, 111280 (2022).
Frere, S. & Slutsky, I. Alzheimer’s disease: from firing instability to homeostasis network collapse. Neuron 97, 32–58 (2018).
pubmed: 29301104 doi: 10.1016/j.neuron.2017.11.028
Oh, S. T. et al. Nasal cavity administration of melanin-concentrating hormone improves memory impairment in memory-impaired and Alzheimer’s disease mouse models. Mol. Neurobiol. 56, 8076–8086 (2019).
pubmed: 31183806 doi: 10.1007/s12035-019-01662-1
Takase, K. et al. Meta-analysis of melanin-concentrating hormone signaling-deficient mice on behavioral and metabolic phenotypes. PLoS ONE 9, e99961 (2014).
pubmed: 24924345 pmcid: 4055708 doi: 10.1371/journal.pone.0099961
Thannickal, T. C., Lai, Y. Y. & Siegel, J. M. Hypocretin (orexin) cell loss in Parkinson’s disease. Brain 130, 1586–1595 (2007).
pubmed: 17491094 doi: 10.1093/brain/awm097
Severinsen, J. E. et al. Association analyses suggest GPR24 as a shared susceptibility gene for bipolar affective disorder and schizophrenia. Am. J. Med. Genet. B Neuropsychiatr. Genet. 141, 524–533 (2006).
doi: 10.1002/ajmg.b.30335
Mullins, N. et al. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat. Genet. 53, 817–829 (2021).
pubmed: 34002096 pmcid: 8192451 doi: 10.1038/s41588-021-00857-4
Saito, T. et al. Single App knock-in mouse models of Alzheimer’s disease. Nat. Neurosci. 17, 661–663 (2014).
pubmed: 24728269 doi: 10.1038/nn.3697
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).
pubmed: 29608179 pmcid: 6700744 doi: 10.1038/nbt.4096
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2009).
pubmed: 19910308 pmcid: 2796818 doi: 10.1093/bioinformatics/btp616
Eden, E., Navon, R., Steinfeld, I., Lipson, D. & Yakhini, Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10, 48 (2009).
pubmed: 19192299 pmcid: 2644678 doi: 10.1186/1471-2105-10-48
Koopmans, F. et al. SynGO: an evidence-based, expert-curated knowledge base for the synapse. Neuron 103, 217–234 (2019).
pubmed: 31171447 pmcid: 6764089 doi: 10.1016/j.neuron.2019.05.002
Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991).
pubmed: 1759558 doi: 10.1007/BF00308809
Thal, D. R. et al. Sequence of Aβ-protein deposition in the human medial temporal lobe. J. Neuropathol. Exp. Neurol. 59, 733–748 (2000).
pubmed: 10952063 doi: 10.1093/jnen/59.8.733
Hyman, B. T. et al. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement. 8, 1–13 (2012).
pubmed: 22265587 pmcid: 3266529 doi: 10.1016/j.jalz.2011.10.007
Ding, G. et al. REV-ERB in GABAergic neurons controls diurnal hepatic insulin sensitivity. Nature 592, 763–767 (2021).
pubmed: 33762728 pmcid: 8085086 doi: 10.1038/s41586-021-03358-w
Verret, L. et al. A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep. BMC Neurosci. 4, 19 (2003).
pubmed: 12964948 pmcid: 201018 doi: 10.1186/1471-2202-4-19
Roberson, E. D. et al. Amyloid-β/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer’s disease. J. Neurosci. 31, 700–711 (2011).
pubmed: 21228179 pmcid: 3325794 doi: 10.1523/JNEUROSCI.4152-10.2011

Auteurs

Sara Calafate (S)

VIB Center for Brain & Disease Research, Leuven, Belgium. sara.calafate@kuleuven.be.
KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium. sara.calafate@kuleuven.be.
Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal. sara.calafate@kuleuven.be.
ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal. sara.calafate@kuleuven.be.

Gökhan Özturan (G)

VIB Center for Brain & Disease Research, Leuven, Belgium.
KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium.

Nicola Thrupp (N)

VIB Center for Brain & Disease Research, Leuven, Belgium.
KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium.

Jeroen Vanderlinden (J)

VIB Center for Brain & Disease Research, Leuven, Belgium.
KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium.

Luísa Santa-Marinha (L)

Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.

Rafaela Morais-Ribeiro (R)

Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.

Antonella Ruggiero (A)

Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Ivan Bozic (I)

Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland.

Thomas Rusterholz (T)

Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland.
Department of Biomedical Research, University of Bern, Bern, Switzerland.

Blanca Lorente-Echeverría (B)

VIB Center for Brain & Disease Research, Leuven, Belgium.
KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium.

Marcelo Dias (M)

Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.

Wei-Ting Chen (WT)

VIB Center for Brain & Disease Research, Leuven, Belgium.
KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium.

Mark Fiers (M)

VIB Center for Brain & Disease Research, Leuven, Belgium.
KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium.

Ashley Lu (A)

VIB Center for Brain & Disease Research, Leuven, Belgium.
KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium.

Ine Vlaeminck (I)

VIB Center for Brain & Disease Research, Leuven, Belgium.
KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium.

Eline Creemers (E)

VIB Center for Brain & Disease Research, Leuven, Belgium.
KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium.

Katleen Craessaerts (K)

VIB Center for Brain & Disease Research, Leuven, Belgium.
KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium.

Joris Vandenbempt (J)

VIB Center for Brain & Disease Research, Leuven, Belgium.
KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium.

Luuk van Boekholdt (L)

VIB Center for Brain & Disease Research, Leuven, Belgium.
KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium.
KU Leuven, Department of Otorhinolaryngology, Leuven, Belgium.

Suresh Poovathingal (S)

VIB Center for Brain & Disease Research, Leuven, Belgium.
KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium.

Kristofer Davie (K)

VIB Center for Brain & Disease Research, Leuven, Belgium.
KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium.

Dietmar Rudolf Thal (DR)

Department of Imaging and Pathology, Laboratory of Neuropathology, and Leuven Brain Institute, KU-Leuven, O&N IV, Leuven, Belgium.
Department of Pathology, UZ Leuven, Leuven, Belgium.

Keimpe Wierda (K)

VIB Center for Brain & Disease Research, Leuven, Belgium.
KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium.

Tiago Gil Oliveira (TG)

Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.

Inna Slutsky (I)

Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.

Antoine Adamantidis (A)

Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland.
Department of Biomedical Research, University of Bern, Bern, Switzerland.

Bart De Strooper (B)

VIB Center for Brain & Disease Research, Leuven, Belgium. bart.destrooper@kuleuven.be.
KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium. bart.destrooper@kuleuven.be.
UK Dementia Research Institute (UK DRI@UCL) at University College London, London, UK. bart.destrooper@kuleuven.be.

Joris de Wit (J)

VIB Center for Brain & Disease Research, Leuven, Belgium. joris.dewit@kuleuven.be.
KU Leuven, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium. joris.dewit@kuleuven.be.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH