Adsorption of methylene blue dye from aqueous solution using low-cost adsorbent: kinetic, isotherm adsorption, and thermodynamic studies.


Journal

Environmental monitoring and assessment
ISSN: 1573-2959
Titre abrégé: Environ Monit Assess
Pays: Netherlands
ID NLM: 8508350

Informations de publication

Date de publication:
16 May 2023
Historique:
received: 23 02 2023
accepted: 03 05 2023
medline: 17 5 2023
pubmed: 16 5 2023
entrez: 15 5 2023
Statut: epublish

Résumé

Fig leaf, an environmentally friendly byproduct of fruit plants, has been used for the first time to treat of methylene blue dye. The fig leaf-activated carbon (FLAC-3) was prepared successfully and used for the adsorption of methylene blue dye (MB). The adsorbent was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and the Brunauer-Emmett-Teller (BET). In the present study, initial concentrations, contact time, temperatures, pH solution, FLAC-3 dose, volume solution, and activation agent were investigated. However, the initial concentration of MB was investigated at different concentrations of 20, 40, 80, 120, and 200 mg/L. pH solution was examined at these values: pH3, pH7, pH8, and pH11. Moreover, adsorption temperatures of 20, 30, 40, and 50 °C were considered to investigate how the FLAC-3 works on MB dye removal. The adsorption capacity of FLAC-3 was determined to be 24.75 mg/g for 0.08 g and 41 mg/g for 0.02 g. The adsorption process has followed the Langmuir isotherm model (R

Identifiants

pubmed: 37188926
doi: 10.1007/s10661-023-11334-2
pii: 10.1007/s10661-023-11334-2
doi:

Substances chimiques

Methylene Blue T42P99266K
Water Pollutants, Chemical 0
Charcoal 16291-96-6
Water 059QF0KO0R

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

676

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.

Références

Abdulhameed, A. S., Hum, N. N. M. F., Rangabhashiyam, S., Jawad, A. H., Wilson, L. D., Yaseen, Z. M., et al. (2021). Statistical modeling and mechanistic pathway for methylene blue dye removal by high surface area and mesoporous grass-based activated carbon using K2CO3 activator. Journal of Environmental Chemical Engineering, 9(4), 105530.
doi: 10.1016/j.jece.2021.105530
Abuzerr, S., Darwish, M., & Mahvi, A. H. (2018). Simultaneous removal of cationic methylene blue and anionic reactive red 198 dyes using magnetic activated carbon nanoparticles: Equilibrium, and kinetics analysis. Water Science and Technology, 2017(2), 534–545.
doi: 10.2166/wst.2018.145
Alam, M. Z., Bari, M. N., & Kawsari, S. (2022). Statistical optimization of methylene blue dye removal from a synthetic textile wastewater using indigenous adsorbents. Environmental and Sustainability Indicators, 14, 100176.
doi: 10.1016/j.indic.2022.100176
Al-Ghouti, M. A., & Al-Absi, R. S. (2020). Mechanistic understanding of the adsorption and thermodynamic aspects of cationic methylene blue dye onto cellulosic olive stones biomass from wastewater. Scientific Reports, 10(1), 1–18.
doi: 10.1038/s41598-020-72996-3
Bencheikh, I., Azoulay, K., Mabrouki, J., El Hajjaji, S., Dahchour, A., Moufti, A., & Dhiba, D. (2020). The adsorptive removal of MB using chemically treated artichoke leaves: Parametric, kinetic, isotherm and thermodynamic study. Scientific African, 9, e00509.
doi: 10.1016/j.sciaf.2020.e00509
Bharathi, K. S., & Ramesh, S. T. (2013). Removal of dyes using agricultural waste as low-cost adsorbents: A review. Applied Water Science, 3(4), 773–790.
doi: 10.1007/s13201-013-0117-y
Blaga, A. C., Tanasă, A. M., Cimpoesu, R., Tataru-Farmus, R.-E., & Suteu, D. (2022). Biosorbents based on biopolymers from natural sources and food waste to retain the methylene blue dye from the aqueous medium. Polymers, 14(13), 2728.
doi: 10.3390/polym14132728
Canales-Flores, R. A., & Prieto-García, F. (2020). Taguchi optimization for production of activated carbon from phosphoric acid impregnated agricultural waste by microwave heating for the removal of methylene blue. Diamond and Related Materials, 109, 108027.
doi: 10.1016/j.diamond.2020.108027
Choma, J., Osuchowski, Ł, Dziura, A., Marszewski, M., & Jaroniec, M. (2015). Benzene and methane adsorption on ultrahigh surface area carbons prepared from sulphonated styrene divinylbenzene resin by KOH activation. Adsorption Science & Technology, 33(6–8), 587–594.
doi: 10.1260/0263-6174.33.6-8.587
Choudhry, A., Sharma, A., Khan, T. A., & Chaudhry, S. A. (2021). Flax seeds based magnetic hybrid nanocomposite: An advance and sustainable material for water cleansing. Journal of Water Process Engineering, 42, 102150.
doi: 10.1016/j.jwpe.2021.102150
Dural, M. U., Cavas, L., Papageorgiou, S. K., & Katsaros, F. K. (2011). Methylene blue adsorption on activated carbon prepared from Posidonia oceanica (L.) dead leaves: Kinetics and equilibrium studies. Chemical Engineering Journal, 168(1), 77–85.
doi: 10.1016/j.cej.2010.12.038
El Messaoudi, N., El Mouden, A., El Khomri, M., Bouich, A., Fernine, Y., Ciğeroğlu, Z., et al. (2022). Experimental study and theoretical statistical modeling of acid blue 25 remediation using activated carbon from Citrus sinensis leaf. Fluid Phase Equilibria, 563, 113585.
doi: 10.1016/j.fluid.2022.113585
Guo, D., Li, Y., Cui, B., Hu, M., Luo, S., Ji, B., & Liu, Y. (2020). Natural adsorption of methylene blue by waste fallen leaves of Magnoliaceae and its repeated thermal regeneration for reuse. Journal of Cleaner Production, 267, 121903.
doi: 10.1016/j.jclepro.2020.121903
Gutub, S. A., Bassyouni, M., & Abdel-Hamid, S. M. S. (2013). Dissolved solids adsorption of freshwater using synthesized bio-foam composite. Life Science Journal, 10(2), 464–471.
Haghbin, M. R., & Shahrak, M. N. (2021). Process conditions optimization for the fabrication of highly porous activated carbon from date palm bark wastes for removing pollutants from water. Powder Technology, 377, 890–899.
doi: 10.1016/j.powtec.2020.09.051
Halysh, V., Sevastyanova, O., Pikus, S., Dobele, G., Pasalskiy, B., Gun’ko, V. M., & Kartel, M. (2020). Sugarcane bagasse and straw as low-cost lignocellulosic sorbents for the removal of dyes and metal ions from water. Cellulose, 27(14), 8181–8197.
doi: 10.1007/s10570-020-03339-8
Hasan, R., Ying, W. J., Cheng, C. C., Jaafar, N. F., Jusoh, R., Jalil, A. A., & Setiabudi, H. D. (2020). Methylene blue adsorption onto cockle shells-treated banana pith: Optimization, isotherm, kinetic, and thermodynamic studies. Indonesian Journal of Chemistry, 20(2), 368–378.
doi: 10.22146/ijc.42822
Hu, X.-S., Liang, R., & Sun, G. (2018). Super-adsorbent hydrogel for removal of methylene blue dye from aqueous solution. Journal of Materials Chemistry A, 6(36), 17612–17624.
doi: 10.1039/C8TA04722G
Huang, S., & Shi, J. (2014). Monolithic macroporous carbon materials as high-performance and ultralow-cost sorbents for efficiently solving organic pollution. Industrial & Engineering Chemistry Research, 53(12), 4888–4893.
doi: 10.1021/ie5003558
Islam, M. A., Ahmed, M. J., Khanday, W. A., Asif, M., & Hameed, B. H. (2017). Mesoporous activated coconut shell-derived hydrochar prepared via hydrothermal carbonization-NaOH activation for methylene blue adsorption. Journal of Environmental Management, 203, 237–244.
doi: 10.1016/j.jenvman.2017.07.029
Izan, N. R., Zainol, M. M., Nordin, A. H., Asmadi, M., Wong, S. L., Azhar, M. A. I., & Alias, N. H. (2020). Removal of methylene blue via adsorption using magnetic char derived from food waste. Malaysian Journal of Chemistry, 24(2) 283–292.
Jawad, A. H., Rashid, R. A., Ishak, M. A. M., & Wilson, L. D. (2016). Adsorption of methylene blue onto activated carbon developed from biomass waste by H2SO4 activation: Kinetic, equilibrium and thermodynamic studies. Desalination and Water Treatment, 57(52), 25194–25206.
doi: 10.1080/19443994.2016.1144534
Jawad, A. H., Ramlah, A. R., Khudzir, I., & Sabar, S. (2017). High surface area mesoporous activated carbon developed from coconut leaf by chemical activation with H3PO4 for adsorption of methylene blue. Desalination and Water Treatment, 74, 326–335.
doi: 10.5004/dwt.2017.20571
Jawad, A. H., Bardhan, M., Islam, M. A., Islam, M. A., Syed-Hassan, S. S. A., Surip, S. N., et al. (2020). Insights into the modeling, characterization and adsorption performance of mesoporous activated carbon from corn cob residue via microwave-assisted H3PO4 activation. Surfaces and Interfaces, 21, 100688.
doi: 10.1016/j.surfin.2020.100688
Jiang, W., Zhang, L., Guo, X., Yang, M., Lu, Y., Wang, Y., et al. (2021). Adsorption of cationic dye from water using an iron oxide/activated carbon magnetic composites prepared from sugarcane bagasse by microwave method. Environmental Technology, 42(3), 337–350.
doi: 10.1080/09593330.2019.1627425
Kadhom, M., Albayati, N., Alalwan, H., & Al-Furaiji, M. (2020). Removal of dyes by agricultural waste. Sustainable Chemistry and Pharmacy, 16, 100259.
doi: 10.1016/j.scp.2020.100259
Khangwichian, W., Pattamasewe, S., Leesing, R., Knijnenburg, J. T. N., & Ngernyen, Y. (2022). Adsorption of cationic dye on activated carbon from hydrolyzed Dipterocarpus alatus leaves: Waste from biodiesel production. Engineering and Applied Science Research, 49(4), 531–544.
Khomri, M. E., Messaoudi, N. E., Dbik, A., Bentahar, S., Fernine, Y., Bouich, A., et al. (2022). Modification of low-cost adsorbent prepared from agricultural solid waste for the adsorption and desorption of cationic dye. Emergent Materials, 5(6), 1679–1688.
doi: 10.1007/s42247-022-00390-y
Kılıç, M., Apaydın-Varol, E., & Pütün, A. E. (2012). Preparation and surface characterization of activated carbons from Euphorbia rigida by chemical activation with ZnCl2, K2CO3, NaOH and H3PO4. Applied Surface Science, 261, 247–254.
doi: 10.1016/j.apsusc.2012.07.155
Kushwaha, A. K., Gupta, N., & Chattopadhyaya, M. C. (2014). Removal of cationic methylene blue and malachite green dyes from aqueous solution by waste materials of Daucus carota. Journal of Saudi Chemical Society, 18(3), 200–207.
doi: 10.1016/j.jscs.2011.06.011
Li, Z., Gao, X., Wu, L., Wang, K., & Kobayashi, N. (2017). Preparation of activated carbons from poplar wood by chemical activation with KOH. Journal of Porous Materials, 24(1), 193–202.
doi: 10.1007/s10934-016-0252-6
Liu, L., Li, Y., & Fan, S. (2019). Preparation of KOH and H3PO4 modified biochar and its application in methylene blue removal from aqueous solution. Processes, 7(12), 891.
doi: 10.3390/pr7120891
Liu, Z., Sun, Y., Xu, X., Qu, J., & Qu, B. (2020). Adsorption of Hg (II) in an aqueous solution by activated carbon prepared from rice husk using KOH activation. ACS Omega, 5(45), 29231–29242.
doi: 10.1021/acsomega.0c03992
Mahamad, M. N., Zaini, M. A. A., & Zakaria, Z. A. (2015). Preparation and characterization of activated carbon from pineapple waste biomass for dye removal. International Biodeterioration & Biodegradation, 102, 274–280.
doi: 10.1016/j.ibiod.2015.03.009
Mangla, D., Sharma, A., & Ikram, S. (2022). Synthesis of ecological chitosan/PVP magnetic composite: Remediation of amoxicillin trihydrate from its aqueous solution, isotherm modelling, thermodynamic, and kinetic studies. Reactive and Functional Polymers, 175, 105261.
doi: 10.1016/j.reactfunctpolym.2022.105261
Martín-González, M. A., Susial, P., Pérez-Peña, J., & Doña-Rodríguez, J. M. (2013). Preparation of activated carbons from banana leaves by chemical activation with phosphoric acid. Adsorption of methylene blue. Revista mexicana de ingeniería química, 12(3), 595–608.
Mekuria, D., Diro, A., Melak, F., & Asere, T. G. (2022). Adsorptive removal of methylene blue dye using biowaste materials: Barley Bran and enset midrib leaf. Journal of Chemistry.  https://doi.org/10.1155/2022/4849758
El Messaoudi, N., El Khomri, M., Goodarzvand Chegini, Z., Chlif, N., Dbik, A., & Bentahar, S., et al. (2021). Desorption study and reusability of raw and H2SO4 modified jujube shells (Zizyphus lotus) for the methylene blue adsorption. International Journal of Environmental Analytical Chemistry, 1–17.
Mousavi, S. A., Mahmoudi, A., Amiri, S., Darvishi, P., & Noori, E. (2022). Methylene blue removal using grape leaves waste: Optimization and modeling. Applied Water Science, 12(5), 1–11.
doi: 10.1007/s13201-022-01648-w
Murthy, T. P. K., Gowrishankar, B. S., Krishna, R. H., Chandraprabha, M. N., & Mathew, B. B. (2020). Magnetic modification of coffee husk hydrochar for adsorptive removal of methylene blue: Isotherms, kinetics and thermodynamic studies. Environmental Chemistry and Ecotoxicology, 2, 205–212.
doi: 10.1016/j.enceco.2020.10.002
Mustikaningrum, M., Cahyono, R. B., & Yuliansyah, A. T. (n.d.). Adsorption of methylene blue on nano-crystal cellulose of oil palm trunk: Kinetic and thermodynamic studies. Indonesian Journal of Chemistry, 22(4), 953–964.
Nordin, A. H., Wong, S., Ngadi, N., Zainol, M. M., Abd Latif, N. A. F., & Nabgan, W. (2021). Surface functionalization of cellulose with polyethyleneimine and magnetic nanoparticles for efficient removal of anionic dye in wastewater. Journal of Environmental Chemical Engineering, 9(1), 104639.
doi: 10.1016/j.jece.2020.104639
Omer, O. S., Hussein, M. A., Hussein, B. H. M., & Mgaidi, A. (2018). Adsorption thermodynamics of cationic dyes (methylene blue and crystal violet) to a natural clay mineral from aqueous solution between 293.15 and 323.15 K. Arabian Journal of Chemistry, 11(5), 615–623.
doi: 10.1016/j.arabjc.2017.10.007
Patra, B. R., Mukherjee, A., Nanda, S., & Dalai, A. K. (2021a). Biochar production, activation and adsorptive applications: A review. Environmental Chemistry Letters, 19(3), 2237–2259.
doi: 10.1007/s10311-020-01165-9
Patra, B. R., Nanda, S., Dalai, A. K., & Meda, V. (2021b). Slow pyrolysis of agro-food wastes and physicochemical characterization of biofuel products. Chemosphere, 285, 131431.
doi: 10.1016/j.chemosphere.2021.131431
Patra, B. R., Nanda, S., Dalai, A. K., & Meda, V. (2021c). Taguchi-based process optimization for activation of agro-food waste biochar and performance test for dye adsorption. Chemosphere, 285, 131531.
doi: 10.1016/j.chemosphere.2021.131531
Prashanthakumar, T. K. M., Kumar, S. K. A., & Sahoo, S. K. (2018). A quick removal of toxic phenolic compounds using porous carbon prepared from renewable biomass coconut spathe and exploration of new source for porous carbon materials. Journal of Environmental Chemical Engineering, 6(1), 1434–1442.
doi: 10.1016/j.jece.2018.01.051
Rashid, R. A., Jawad, A. H., Ishak, M. A. M., & Kasim, N. N. (2016). KOH-activated carbon developed from biomass waste: Adsorption equilibrium, kinetic and thermodynamic studies for Methylene blue uptake. Desalination and Water Treatment, 57(56), 27226–27236.
doi: 10.1080/19443994.2016.1167630
Shakoor, S., & Nasar, A. (2017). Adsorptive treatment of hazardous methylene blue dye from artificially contaminated water using cucumis sativus peel waste as a low-cost adsorbent. Groundwater for Sustainable Development, 5, 152–159.
doi: 10.1016/j.gsd.2017.06.005
Shannon, M. A., Bohn, P. W., Elimelech, M., Georgiadis, J. G., Mariñas, B. J., & Mayes, A. M. (2008). Science and technology for water purification in the coming decades. Nature, 452(7185), 301–310.
doi: 10.1038/nature06599
Sharma, A., Mangla, D., & Chaudhry, S. A. (2022). Recent advances in magnetic composites as adsorbents for wastewater remediation. Journal of Environmental Management, 306, 114483.
doi: 10.1016/j.jenvman.2022.114483
Sharma, A., Rasheed, S., Mangla, D., Choudhry, A., Shukla, S., & Chaudhry, S. A. (2023). Cobalt ferrite incorporated ocimum sanctum nanocomposite matrix as an interface for adsorption of organic dyes: A sustainable alternative. ChemistrySelect, 8(5), e202203709.
doi: 10.1002/slct.202203709
Shelke, B. N., Jopale, M. K., & Kategaonkar, A. H. (2022). Exploration of biomass waste as low cost adsorbents for removal of methylene blue dye: A review. Journal of the Indian Chemical Society, 99(7), 100530.
Singh, A., Nanda, S., Guayaquil-Sosa, J. F., & Berruti, F. (2021). Pyrolysis of Miscanthus and characterization of value-added bio-oil and biochar products. The Canadian Journal of Chemical Engineering, 99, S55–S68.
doi: 10.1002/cjce.23978
Stewart, G. G. (2016). Saccharomyces species in the Production of Beer. Beverages, 2(4), 34.
doi: 10.3390/beverages2040034
Tran, H. N., You, S.-J., & Chao, H.-P. (2017a). Fast and efficient adsorption of methylene green 5 on activated carbon prepared from new chemical activation method. Journal of Environmental Management, 188, 322–336.
doi: 10.1016/j.jenvman.2016.12.003
Tran, H. N., You, S.-J., Nguyen, T. V., & Chao, H.-P. (2017b). Insight into the adsorption mechanism of cationic dye onto biosorbents derived from agricultural wastes. Chemical Engineering Communications, 204(9), 1020–1036.
doi: 10.1080/00986445.2017.1336090
Wang, J., & Guo, X. (2020). Adsorption kinetic models: Physical meanings, applications, and solving methods. Journal of Hazardous Materials, 390, 122156.
doi: 10.1016/j.jhazmat.2020.122156
Wu, H.-Y., Chen, S. S., Liao, W., Wang, W., Jang, M.-F., Chen, W.-H., et al. (2020). Assessment of agricultural waste-derived activated carbon in multiple applications. Environmental Research, 191, 110176.
doi: 10.1016/j.envres.2020.110176
Yağmur, H. K., & Kaya, İ. (2021). Synthesis and characterization of magnetic ZnCl2-activated carbon produced from coconut shell for the adsorption of methylene blue. Journal of Molecular Structure, 1232, 130071.
doi: 10.1016/j.molstruc.2021.130071
Zhu, R., Yu, Q., Li, M., Zhao, H., Jin, S., Huang, Y., et al. (2021). Analysis of factors influencing pore structure development of agricultural and forestry waste-derived activated carbon for adsorption application in gas and liquid phases: A review. Journal of Environmental Chemical Engineering, 9(5), 105905.
doi: 10.1016/j.jece.2021.105905

Auteurs

Safaa Talib Al-Asadi (ST)

Department of Chemistry, College of Sciences for Women, University of Babylon, Hilla, Iraq.

Fouad Fadhil Al-Qaim (FF)

Department of Chemistry, College of Sciences for Women, University of Babylon, Hilla, Iraq. fouad.fadhil@uobabylon.edu.iq.

Haider Falih Shamikh Al-Saedi (HFS)

College of Pharmacy, University of Al-Ameed, Karbala, Iraq.

Issa Farhan Deyab (IF)

Medical Physics Department, Al-Mustaqbal University College, 51001, Hillah, Babil, Iraq.

Hesam Kamyab (H)

Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India.

Shreeshivadasan Chelliapan (S)

Engineering Department, Razak Faculty of Technology & Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.

Articles similaires

Aspergillus Hydrogen-Ion Concentration Coculture Techniques Secondary Metabolism Streptomyces rimosus
Animals Dietary Fiber Dextran Sulfate Mice Disease Models, Animal
India Carbon Sequestration Environmental Monitoring Carbon Biomass
Silicon Dioxide Water Hot Temperature Compressive Strength X-Ray Diffraction

Classifications MeSH