UVA-induced metabolic changes in non-malignant skin cells and the potential role of pyruvate as antioxidant.
Humans
Antioxidants
/ pharmacology
Matrix Metalloproteinase 1
/ genetics
Matrix Metalloproteinase 3
/ metabolism
Reactive Oxygen Species
/ metabolism
8-Hydroxy-2'-Deoxyguanosine
/ metabolism
Hydrogen Peroxide
/ metabolism
Skin
/ radiation effects
Skin Aging
Glucose
Pyruvates
/ pharmacology
Ultraviolet Rays
Fibroblasts
/ metabolism
Cells, Cultured
Glucose metabolism
MMP
Non-malignant dermal cells
Pyruvate
Reactive oxygen species
Ultraviolet (UV) radiation
Journal
Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology
ISSN: 1474-9092
Titre abrégé: Photochem Photobiol Sci
Pays: England
ID NLM: 101124451
Informations de publication
Date de publication:
Aug 2023
Aug 2023
Historique:
received:
20
01
2023
accepted:
04
04
2023
medline:
9
8
2023
pubmed:
17
5
2023
entrez:
16
5
2023
Statut:
ppublish
Résumé
The exposure to UVA (320-400 nm) irradiation is a major threat to human skin concerning photoaging and carcinogenesis. It has been shown that UVA irradiation can induce reactive oxygen species (ROS) and DNA mutations, such as 8-hydroxydeoxyguanosine. Furthermore, UVA induces the expression of photoaging-associated matrix metalloproteases (MMPs), especially of matrix metalloprotease 1 (MMP 1) and matrix metalloprotease 3 (MMP 3). In addition to this, it was recently shown that UVA-induced ROS also increase glucose metabolism of melanoma cells, however, the influence of UVA on the glucose metabolism of non-malignant cells of the human skin has, so far, not been investigated in detail. Here, we investigated the UVA-induced changes in glucose metabolism and the functional relevance of these changes in primary fibroblasts-normal non-malignant cells of the skin. These cells showed an UVA-induced enhanced glucose consumption and lactate production and changes in pyruvate production. As it has been proposed that pyruvate could have antioxidant properties we tested the functional relevance of pyruvate as protective agent against UVA-induced ROS. Our initial experiments support earlier publications, demonstrating that pyruvate treated with H
Identifiants
pubmed: 37193818
doi: 10.1007/s43630-023-00419-z
pii: 10.1007/s43630-023-00419-z
doi:
Substances chimiques
Antioxidants
0
Matrix Metalloproteinase 1
EC 3.4.24.7
Matrix Metalloproteinase 3
EC 3.4.24.17
Reactive Oxygen Species
0
8-Hydroxy-2'-Deoxyguanosine
88847-89-6
Hydrogen Peroxide
BBX060AN9V
Glucose
IY9XDZ35W2
Pyruvates
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1889-1899Subventions
Organisme : Deutsche Forschungsgemeinschaft
ID : KFO262
Organisme : Deutsche Forschungsgemeinschaft
ID : Ptoject 11
Informations de copyright
© 2023. The Author(s).
Références
Modenese, A., Korpinen, L., & Gobba, F. (2018). Solar radiation exposure and outdoor work: An underestimated occupational risk. International Journal of Environmental Research and Public Health, 15(10), 2063. https://doi.org/10.3390/ijerph15102063
doi: 10.3390/ijerph15102063
pubmed: 30241306
pmcid: 6209927
Armstrong, B., Baverstock, K., Brenner, D., Cardis, E., Green, A., Guilmette, R., Hall, J., Hill, M., Hoel, D., Krewski, D., Little, M., Marshall, M., Mitchel, R., Muirhead, C., Priest, N., Richardson, D., Riddell, T., Sabatier, L., Sokolnikov, M., & Ullrich, R. (2012). PartD: Radiation. Volume 100. A review of human carcinogens. IARC monographs on the evaluation of carcinogenic risks to humans. 100. pp. 35–40
Parisi, A. V., & Wong, J. C. F. (1997). Erythemal irradiances of filtered ultraviolet radiation. Physics in Medicine and Biology, 42(7), 1263–1275. https://doi.org/10.1088/0031-9155/42/7/003
doi: 10.1088/0031-9155/42/7/003
pubmed: 9253038
Kimlin, M. G., & Parisi, A. V. (1999). Ultraviolet radiation penetrating vehicle glass: A field based comparative study. Physics in Medicine and Biology, 44(4), 917–926. https://doi.org/10.1088/0031-9155/44/4/008
doi: 10.1088/0031-9155/44/4/008
pubmed: 10232805
Jaszewska, E., Soin, M., Filipek, A., & Naruszewicz, M. (2013). UVA-induced ROS generation inhibition by Oenothera paradoxa defatted seeds extract and subsequent cell death in human dermal fibroblasts. Journal of Photochemistry and Photobiology B: Biology, 126, 42–46. https://doi.org/10.1016/j.jphotobiol.2013.07.001
doi: 10.1016/j.jphotobiol.2013.07.001
pubmed: 23892189
Ichihashi, M., Ueda, M., Budiyanto, A., Bito, T., Oka, M., Fukunaga, M., Tsuru, K., & Horikawa, T. (2003). UV-induced skin damage. Toxicology, 189(1), 21–39. https://doi.org/10.1016/S0300-483X(03)00150-1
doi: 10.1016/S0300-483X(03)00150-1
pubmed: 12821280
Seifermann, M., & Epe, B. (2017). Oxidatively generated base modifications in DNA: Not only carcinogenic risk factor but also regulatory mark? Free Radical Biology and Medicine, 107, 258–265. https://doi.org/10.1016/j.freeradbiomed.2016.11.018
doi: 10.1016/j.freeradbiomed.2016.11.018
pubmed: 27871818
Birch-Machin, M. A., & Bowman, A. (2016). Oxidative stress and ageing. British Journal of Dermatology, 175, 26–29. https://doi.org/10.1111/bjd.14906
doi: 10.1111/bjd.14906
pubmed: 27667312
Jéquier, E. (1994). Carbohydrates as a source of energy. American Journal of Clinical Nutrition, 59(3 Suppl), 682s–685s. https://doi.org/10.1093/ajcn/59.3.682S
doi: 10.1093/ajcn/59.3.682S
pubmed: 8116550
Vander Heiden, M. G., Cantley, L. C., & Thompson, C. B. (2009). Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science, 324(5930), 1029–1033. https://doi.org/10.1126/science.1160809
doi: 10.1126/science.1160809
pubmed: 19460998
pmcid: 2849637
Abdel-Haleem, A. M., Lewis, N. E., Jamshidi, N., Mineta, K., Gao, X., & Gojobori, T. (2017). The emerging facets of non-cancerous Warburg effect. Frontier Endocrinology (Lausanne), 8, 279. https://doi.org/10.3389/fendo.2017.00279
doi: 10.3389/fendo.2017.00279
Warburg, O., Wind, F., & Negelein, E. (1927). The metabolism of tumors in the body. Journal of General Physiology, 8(6), 519–530.
doi: 10.1085/jgp.8.6.519
pubmed: 19872213
pmcid: 2140820
Kamenisch, Y., Baban, T. S., Schuller, W., von Thaler, A. K., Sinnberg, T., Metzler, G., Bauer, J., Schittek, B., Garbe, C., Rocken, M., & Berneburg, M. (2016). UVA-irradiation induces melanoma invasion via the enhanced Warburg effect. Journal of Investigative Dermatology, 136(9), 1866–1875. https://doi.org/10.1016/j.jid.2016.02.815
doi: 10.1016/j.jid.2016.02.815
pubmed: 27185340
Yang, X., Wang, J., Wang, H., Li, X., He, C., & Liu, L. (2021). Metabolomics study of fibroblasts damaged by UVB and BaP. Scientific Reports, 11(1), 11176. https://doi.org/10.1038/s41598-021-90186-7
doi: 10.1038/s41598-021-90186-7
pubmed: 34045475
pmcid: 8160258
Kremslehner, C., Miller, A., Nica, R., Nagelreiter, I.-M., Narzt, M.-S., Golabi, B., Vorstandlechner, V., Mildner, M., Lachner, J., Tschachler, E., Ferrara, F., Klavins, K., Schosserer, M., Grillari, J., Haschemi, A., & Gruber, F. (2020). Imaging of metabolic activity adaptations to UV stress, drugs and differentiation at cellular resolution in skin and skin equivalents—Implications for oxidative UV damage. Redox Biology, 37, 101583. https://doi.org/10.1016/j.redox.2020.101583
doi: 10.1016/j.redox.2020.101583
pubmed: 32713735
pmcid: 7767734
Marionnet, C., Pierrard, C., Golebiewski, C., & Bernerd, F. (2014). Diversity of biological effects induced by longwave UVA rays (UVA1) in reconstructed skin. PLoS ONE, 9(8), e105263. https://doi.org/10.1371/journal.pone.0105263
doi: 10.1371/journal.pone.0105263
pubmed: 25140898
pmcid: 4139344
O’Donnell-Tormey, J., Nathan, C., Lanks, K., DeBoer, C., & Harpe, J. (1987). Secretion of pyruvate An antioxidant defense of mammalian cell. The Journal of Experimental Medicine, 165, 500–514.
doi: 10.1084/jem.165.2.500
pubmed: 3102672
Mallet, R. T., Squires, J. E., Bhatia, S., & Sun, J. (2002). Pyruvate restores contractile function and antioxidant defenses of hydrogen peroxide-challenged myocardium. Journal of Molecular and Cellular Cardiology, 34(9), 1173–1184. https://doi.org/10.1006/jmcc.2002.2050
doi: 10.1006/jmcc.2002.2050
pubmed: 12392891
Ramos-Ibeas, P., Barandalla, M., Colleoni, S., & Lazzari, G. (2017). Pyruvate antioxidant roles in human fibroblasts and embryonic stem cells. Molecular and Cellular Biochemistry, 429(1), 137–150. https://doi.org/10.1007/s11010-017-2942-z
doi: 10.1007/s11010-017-2942-z
pubmed: 28247212
Aoki-Yoshida, A., Aoki, R., & Takayama, Y. (2013). Protective effect of pyruvate against UVB-induced damage in HaCaT human keratinocytes. Journal of Bioscience and Bioengineering, 115(4), 442–448. https://doi.org/10.1016/j.jbiosc.2012.11.004
doi: 10.1016/j.jbiosc.2012.11.004
pubmed: 23219088
Ivanova, I., Kurz, B., Lang, K., Maisch, T., Berneburg, M., & Kamenisch, Y. (2022). Investigation of the HelioVital filter foil revealed protective effects against UVA1 irradiation-induced DNA damage and against UVA1-induced expression of matrixmetalloproteinases (MMP) MMP1, MMP2, MMP3 and MMP15. Photochemical and Photobiological Sciences, 21(3), 361–372. https://doi.org/10.1007/s43630-022-00177-4
doi: 10.1007/s43630-022-00177-4
pubmed: 35174452
Kim, J. Y., Lee, S. H., Bae, I.-H., Shin, D. W., Min, D., Ham, M., Kim, K.-H., Lee, T. R., Kim, H.-J., Son, E. D., Lee, A.-Y., Song, Y. W., & Kil, I. S. (2018). Pyruvate protects against cellular senescence through the control of mitochondrial and lysosomal function in dermal fibroblasts. Journal of Investigative Dermatology, 138(12), 2522–2530. https://doi.org/10.1016/j.jid.2018.05.033
doi: 10.1016/j.jid.2018.05.033
pubmed: 29959907
Constantopoulos, G., & Barranger, J. A. (1984). Nonenzymatic decarboxylation of pyruvate. Analytical Biochemistry, 139(2), 353–358. https://doi.org/10.1016/0003-2697(84)90016-2
doi: 10.1016/0003-2697(84)90016-2
pubmed: 6476373
Lopalco, A., Dalwadi, G., Niu, S., Schowen, R. L., Douglas, J., & Stella, V. J. (2016). Mechanism of decarboxylation of pyruvic acid in the presence of hydrogen peroxide. Journal of Pharmaceutical Sciences, 105(2), 705–713. https://doi.org/10.1002/jps.24653
doi: 10.1002/jps.24653
pubmed: 26422524
Drachman, N., Kadlecek, S., Duncan, I., & Rizi, R. (2017). Quantifying reaction kinetics of the non-enzymatic decarboxylation of pyruvate and production of peroxymonocarbonate with hyperpolarized 13C-NMR. Physical Chemistry Chemical Physics, 19(29), 19316–19325. https://doi.org/10.1039/C7CP02041D
doi: 10.1039/C7CP02041D
pubmed: 28703828
Fischer, K., Hoffmann, P., Voelkl, S., Meidenbauer, N., Ammer, J., Edinger, M., Gottfried, E., Schwarz, S., Rothe, G., Hoves, S., Renner, K., Timischl, B., Mackensen, A., Kunz-Schughart, L., Andreesen, R., Krause, S. W., & Kreutz, M. (2007). Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood, 109(9), 3812–3819. https://doi.org/10.1182/blood-2006-07-035972
doi: 10.1182/blood-2006-07-035972
pubmed: 17255361
Gottfried, E., Kunz-Schughart, L. A., Ebner, S., Mueller-Klieser, W., Hoves, S., Andreesen, R., Mackensen, A., & Kreutz, M. (2006). Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood, 107(5), 2013–2021. https://doi.org/10.1182/blood-2005-05-1795
doi: 10.1182/blood-2005-05-1795
pubmed: 16278308
Siska, P. J., Singer, K., Evert, K., Renner, K., & Kreutz, M. (2020). The immunological Warburg effect: Can a metabolic-tumor-stroma score (MeTS) guide cancer immunotherapy? Immunological Reviews, 295(1), 187–202. https://doi.org/10.1111/imr.12846
doi: 10.1111/imr.12846
pubmed: 32157706
Schneider, L. A., Raizner, K., Wlaschek, M., Brenneisen, P., Gethöffer, K., & Scharffetter-Kochanek, K. (2017). UVA-1 exposure in vivo leads to an IL-6 surge within the skin. Experimental Dermatology, 26(9), 830–832. https://doi.org/10.1111/exd.13286
doi: 10.1111/exd.13286
pubmed: 28094867
Gekara, N. O. (2017). DNA damage-induced immune response: Micronuclei provide key platform. Journal of Cell Biology, 216(10), 2999–3001. https://doi.org/10.1083/jcb.201708069
doi: 10.1083/jcb.201708069
pubmed: 28860276
pmcid: 5626557
Kanemaru, H., Mizukami, Y., Kaneko, A., Tagawa, H., Kimura, T., Kuriyama, H., Sawamura, S., Kajihara, I., Makino, K., Miyashita, A., Aoi, J., Makino, T., Masuguchi, S., Fukushima, S., & Ihn, H. (2021). A mechanism of cooling hot tumors: Lactate attenuates inflammation in dendritic cells. iScience, 24(9), 103067. https://doi.org/10.1016/j.isci.2021.103067
doi: 10.1016/j.isci.2021.103067
pubmed: 34541473
pmcid: 8441070
Warburg, O. (1956). On respiratory impairment in cancer cells. Science, 124(3215), 269–270.
doi: 10.1126/science.124.3215.269
pubmed: 13351639
Djavaheri-Mergny, M., Marsac, C., Mazière, C., Santus, R., Michel, L., Dubertret, L., & Mazière, J. C. (2001). UV-A irradiation induces a decrease in the mitochondrial respiratory activity of human NCTC 2544 keratinocytes. Free Radical Research, 34(6), 583–594. https://doi.org/10.1080/10715760100300481
doi: 10.1080/10715760100300481
pubmed: 11697034
Welti, M., Ramelyte, E., Dummer, R., & Imhof, L. (2020). Evaluation of the minimal erythema dose for UVB and UVA in context of skin phototype and nature of photodermatosis. Photodermatology, Photoimmunology and Photomedicine, 36(3), 200–207. https://doi.org/10.1111/phpp.12537
doi: 10.1111/phpp.12537
pubmed: 32027041
Groussard, C., Morel, I., Chevanne, M., Monnier, M., Cillard, J., & Delamarche, A. (2000). Free radical scavenging and antioxidant effects of lactate ion: An in vitro study. Journal of Applied Physiology, 89(1), 169–175. https://doi.org/10.1152/jappl.2000.89.1.169
doi: 10.1152/jappl.2000.89.1.169
pubmed: 10904049
Raj Rai, S., Bhattacharyya, C., Sarkar, A., Chakraborty, S., Sircar, E., Dutta, S., & Sengupta, R. (2021). Glutathione: Role in oxidative/nitrosative stress, antioxidant defense, and treatments. ChemistrySelect, 6(18), 4566–4590. https://doi.org/10.1002/slct.202100773
doi: 10.1002/slct.202100773
Namkoong, J., Shin, S. S., Lee, H. J., Marín, Y. E., Wall, B. A., Goydos, J. S., & Chen, S. (2007). Metabotropic glutamate receptor 1 and glutamate signaling in human melanoma. Cancer Research, 67(5), 2298–2305. https://doi.org/10.1158/0008-5472.can-06-3665
doi: 10.1158/0008-5472.can-06-3665
pubmed: 17332361
Lewerenz, J., Hewett, S. J., Huang, Y., Lambros, M., Gout, P. W., Kalivas, P. W., Massie, A., Smolders, I., Methner, A., Pergande, M., Smith, S. B., Ganapathy, V., & Maher, P. (2013). The cystine/glutamate antiporter system x(c)(-) in health and disease: From molecular mechanisms to novel therapeutic opportunities. Antioxidants and Redox Signaling, 18(5), 522–555. https://doi.org/10.1089/ars.2011.4391
doi: 10.1089/ars.2011.4391
pubmed: 22667998
pmcid: 3545354
Zaharieva, E. K., Sasatani, M., & Kamiya, K. (2021). Kinetics of DNA repair under chronic irradiation at low and medium dose rates in repair proficient and repair compromised normal fibroblasts. Radiation Research, 197(4), 332–349.
doi: 10.1667/RADE-21-00158.1
Pittayapruek, P., Meephansan, J., Prapapan, O., Komine, M., & Ohtsuki, M. (2016). Role of matrix metalloproteinases in photoaging and photocarcinogenesis. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms17060868
doi: 10.3390/ijms17060868
pubmed: 27271600
pmcid: 4926402
Shin, J. W., Kwon, S. H., Choi, J. Y., Na, J. I., Huh, C. H., Choi, H. R., & Park, K. C. (2019). Molecular mechanisms of dermal aging and antiaging approaches. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms20092126
doi: 10.3390/ijms20092126
pubmed: 31906195
pmcid: 6981941
Buechner, N., Schroeder, P., Jakob, S., Kunze, K., Maresch, T., Calles, C., Krutmann, J., & Haendeler, J. (2008). Changes of MMP-1 and collagen type Ialpha1 by UVA, UVB and IRA are differentially regulated by Trx-1. Experimental Gerontology, 43(7), 633–637. https://doi.org/10.1016/j.exger.2008.04.009
doi: 10.1016/j.exger.2008.04.009
pubmed: 18524517
Catalgol, B., Ziaja, I., Breusing, N., Jung, T., Höhn, A., Alpertunga, B., Schroeder, P., Chondrogianni, N., Gonos, E. S., Petropoulos, I., Friguet, B., Klotz, L.-O., Krutmann, J., & Grune, T. (2009). The proteasome is an integral part of solar ultraviolet a radiation-induced gene expression*. Journal of Biological Chemistry, 284(44), 30076–30086. https://doi.org/10.1074/jbc.M109.044503
doi: 10.1074/jbc.M109.044503
pubmed: 19690165
pmcid: 2781562
Jean, C., Bogdanowicz, P., Haure, M. J., Castex-Rizzi, N., Fournié, J. J., & Laurent, G. (2011). UVA-activated synthesis of metalloproteinases 1, 3 and 9 is prevented by a broad-spectrum sunscreen. Photodermatology, Photoimmunology and Photomedicine, 27(6), 318–324. https://doi.org/10.1111/j.1600-0781.2011.00627.x
doi: 10.1111/j.1600-0781.2011.00627.x
pubmed: 22092736