Palmitoyl acyltransferase ZDHHC7 inhibits androgen receptor and suppresses prostate cancer.


Journal

Oncogene
ISSN: 1476-5594
Titre abrégé: Oncogene
Pays: England
ID NLM: 8711562

Informations de publication

Date de publication:
Jun 2023
Historique:
received: 16 01 2023
accepted: 04 05 2023
revised: 02 05 2023
medline: 26 6 2023
pubmed: 18 5 2023
entrez: 17 5 2023
Statut: ppublish

Résumé

The hormonal transcription factor androgen receptor (AR) is a master regulator of prostate cancer (PCa). Protein palmitoylation, which attaches a palmitate fatty acid to a substrate protein, is mediated by a class of 23 ZDHHC (Zinc-Finger DHHC motif)-family palmitoyltransferases. Although palmitoylation has been shown to modify many proteins and regulate diverse cellular processes, little is known about ZDHHC genes in cancer. Here we examined ZDHHC family gene expression in human tissue panels and identified ZDHHC7 as a PCa-relevant member. RNA-seq analyses of PCa cells with ZDHHC7 de-regulation revealed global alterations in androgen response and cell cycle pathways. Mechanistically, ZDHHC7 inhibits AR gene transcription and therefore reduces AR protein levels and abolishes AR signaling in PCa cells. Accordingly, ZDHHC7 depletion increased the oncogenic properties of PCa cells, whereas restoring ZDHHC7 is sufficient to suppress PCa cell proliferation and invasion in vitro and mitigate xenograft tumor growth in vivo. Lastly, we demonstrated that ZDHHC7 is downregulated in human PCa compared to benign-adjacent tissues, and its loss is associated with worse clinical outcomes. In summary, our study reveals a global role of ZDHHC7 in inhibiting androgen response and suppressing PCa progression and identifies ZDHHC7 loss as a biomarker for aggressive PCa and a target for therapeutic intervention.

Identifiants

pubmed: 37198397
doi: 10.1038/s41388-023-02718-2
pii: 10.1038/s41388-023-02718-2
doi:

Substances chimiques

Acyltransferases EC 2.3.-
Androgens 0
Receptors, Androgen 0
ZDHHC7 protein, human EC 2.3.1.-
AR protein, human 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2126-2138

Subventions

Organisme : U.S. Department of Defense (United States Department of Defense)
ID : PC160759P1
Organisme : Prostate Cancer Foundation (PCF)
ID : 2017CHAL2008
Organisme : U.S. Department of Health & Human Services | NIH | Center for Scientific Review (NIH Center for Scientific Review)
ID : R50CA211271

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72:7–33.
doi: 10.3322/caac.21708 pubmed: 35020204
Heinlein CA, Chang C. Androgen receptor in prostate cancer. Endocr Rev. 2004;25:276–308.
doi: 10.1210/er.2002-0032 pubmed: 15082523
Yuan X, Cai C, Chen S, Chen S, Yu Z, Balk SP. Androgen receptor functions in castration-resistant prostate cancer and mechanisms of resistance to new agents targeting the androgen axis. Oncogene. 2014;33:2815–25.
doi: 10.1038/onc.2013.235 pubmed: 23752196
Heemers HV, Tindall DJ. Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr Rev. 2007;28:778–808.
doi: 10.1210/er.2007-0019 pubmed: 17940184
Huggins C, Hodges CV. Studies on prostatic cancer: I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. 1941. J Urol. 2002;168:9–12.
doi: 10.1016/S0022-5347(05)64820-3 pubmed: 12050481
Chamberlain LH, Shipston MJ. The physiology of protein S-acylation. Physiol Rev. 2015;95:341–76.
doi: 10.1152/physrev.00032.2014 pubmed: 25834228 pmcid: 4551212
Jiang H, Zhang X, Chen X, Aramsangtienchai P, Tong Z, Lin H. Protein lipidation: occurrence, mechanisms, biological functions, and enabling technologies. Chem Rev. 2018;118:919–88.
doi: 10.1021/acs.chemrev.6b00750 pubmed: 29292991 pmcid: 5985209
Zmuda F, Chamberlain LH. Regulatory effects of post-translational modifications on zDHHC S-acyltransferases. J Biol Chem. 2020;295:14640–52.
doi: 10.1074/jbc.REV120.014717 pubmed: 32817054 pmcid: 7586229
Pedram A, Razandi M, Sainson RC, Kim JK, Hughes CC, Levin ER. A conserved mechanism for steroid receptor translocation to the plasma membrane. J Biol Chem. 2007;282:22278–88.
doi: 10.1074/jbc.M611877200 pubmed: 17535799
Yang X, Guo Z, Sun F, Li W, Alfano A, Shimelis H, et al. Novel membrane-associated androgen receptor splice variant potentiates proliferative and survival responses in prostate cancer cells. J Biol Chem. 2011;286:36152–60.
doi: 10.1074/jbc.M111.265124 pubmed: 21878636 pmcid: 3195613
Zhou B, Liu L, Reddivari M, Zhang XA. The palmitoylation of metastasis suppressor KAI1/CD82 is important for its motility- and invasiveness-inhibitory activity. Cancer Res. 2004;64:7455–63.
doi: 10.1158/0008-5472.CAN-04-1574 pubmed: 15492270
Di Vizio D, Adam RM, Kim J, Kim R, Sotgia F, Williams T, et al. Caveolin-1 interacts with a lipid raft-associated population of fatty acid synthase. Cell Cycle. 2008;7:2257–67.
doi: 10.4161/cc.7.14.6475 pubmed: 18635971
Cai H, Smith DA, Memarzadeh S, Lowell CA, Cooper JA, Witte ON. Differential transformation capacity of Src family kinases during the initiation of prostate cancer. Proc Natl Acad Sci USA. 2011;108:6579–84.
doi: 10.1073/pnas.1103904108 pubmed: 21464326 pmcid: 3080985
Kim S, Yang X, Yin A, Zha J, Beharry Z, Bai A, et al. Dietary palmitate cooperates with Src kinase to promote prostate tumor progression. Prostate. 2019;79:896–908.
doi: 10.1002/pros.23796 pubmed: 30900312 pmcid: 6502658
Fiorentino M, Zadra G, Palescandolo E, Fedele G, Bailey D, Fiore C, et al. Overexpression of fatty acid synthase is associated with palmitoylation of Wnt1 and cytoplasmic stabilization of beta-catenin in prostate cancer. Lab Invest. 2008;88:1340–8.
doi: 10.1038/labinvest.2008.97 pubmed: 18838960 pmcid: 3223737
De Piano M, Manuelli V, Zadra G, Otte J, Edqvist PD, Ponten F, et al. Lipogenic signalling modulates prostate cancer cell adhesion and migration via modification of Rho GTPases. Oncogene. 2020;39:3666–79.
doi: 10.1038/s41388-020-1243-2 pubmed: 32139877 pmcid: 7190568
Thomas R, Srivastava S, Katreddy RR, Sobieski J, Weihua Z. Kinase-inactivated EGFR is required for the survival of Wild-Type EGFR-expressing cancer cells treated with tyrosine kinase inhibitors. Int J Mol Sci. 2019;20:2515.
doi: 10.3390/ijms20102515 pubmed: 31121829 pmcid: 6566606
Ko PJ, Dixon SJ. Protein palmitoylation and cancer. EMBO Rep. 2018;19:e46666.
doi: 10.15252/embr.201846666 pubmed: 30232163 pmcid: 6172454
Chen B, Zheng B, DeRan M, Jarugumilli GK, Fu J, Brooks YS, et al. ZDHHC7-mediated S-palmitoylation of Scribble regulates cell polarity. Nat Chem Biol. 2016;12:686–93.
doi: 10.1038/nchembio.2119 pubmed: 27380321 pmcid: 4990496
Pedram A, Razandi M, Deschenes RJ, Levin ER. DHHC-7 and -21 are palmitoylacyltransferases for sex steroid receptors. Mol Biol Cell. 2012;23:188–99.
doi: 10.1091/mbc.e11-07-0638 pubmed: 22031296 pmcid: 3248897
Yeste-Velasco M, Mao X, Grose R, Kudahetti SC, Lin D, Marzec J, et al. Identification of ZDHHC14 as a novel human tumour suppressor gene. J Pathol. 2014;232:566–77.
doi: 10.1002/path.4327 pubmed: 24407904
Zhao JC, Yu J, Runkle C, Wu L, Hu M, Wu D, et al. Cooperation between Polycomb and androgen receptor during oncogenic transformation. Genome Res. 2012;22:322–31.
doi: 10.1101/gr.131508.111 pubmed: 22179855 pmcid: 3266039
Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, et al. Towards a knowledge-based human protein Atlas. Nat Biotechnol. 2010;28:1248–50.
doi: 10.1038/nbt1210-1248 pubmed: 21139605
Rossin A, Durivault J, Chakhtoura-Feghali T, Lounnas N, Gagnoux-Palacios L, Hueber AO. Fas palmitoylation by the palmitoyl acyltransferase DHHC7 regulates Fas stability. Cell Death Differ. 2015;22:643–53.
doi: 10.1038/cdd.2014.153 pubmed: 25301068
Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC, et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl J Med. 2014;371:1028–38.
doi: 10.1056/NEJMoa1315815 pubmed: 25184630 pmcid: 4201502
Sun S, Sprenger CC, Vessella RL, Haugk K, Soriano K, Mostaghel EA, et al. Castration resistance in human prostate cancer is conferred by a frequently occurring androgen receptor splice variant. J Clin Invest. 2010;120:2715–30.
doi: 10.1172/JCI41824 pubmed: 20644256 pmcid: 2912187
Xu D, Zhan Y, Qi Y, Cao B, Bai S, Xu W, et al. Androgen receptor splice variants dimerize to transactivate target genes. Cancer Res. 2015;75:3663–71.
doi: 10.1158/0008-5472.CAN-15-0381 pubmed: 26060018 pmcid: 4558376
Kim J, Lee Y, Lu X, Song B, Fong KW, Cao Q, et al. Polycomb- and methylation-independent roles of EZH2 as a transcription activator. Cell Rep. 2018;25:2808–20.e4.
doi: 10.1016/j.celrep.2018.11.035 pubmed: 30517868 pmcid: 6342284
Yu J, Yu J, Mani RS, Cao Q, Brenner CJ, Cao X, et al. An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell. 2010;17:443–54.
doi: 10.1016/j.ccr.2010.03.018 pubmed: 20478527 pmcid: 2874722
Jin HJ, Zhao JC, Wu L, Kim J, Yu J. Cooperativity and equilibrium with FOXA1 define the androgen receptor transcriptional program. Nat Commun. 2014;5:3972.
doi: 10.1038/ncomms4972 pubmed: 24875621
Xu B, Song B, Lu X, Kim J, Hu M, Zhao JC, et al. Altered chromatin recruitment by FOXA1 mutations promotes androgen independence and prostate cancer progression. Cell Res. 2019;29:773–5.
doi: 10.1038/s41422-019-0204-1 pubmed: 31324884 pmcid: 6796844
Lu X, Fong KW, Gritsina G, Wang F, Baca SC, Brea LT, et al. HOXB13 suppresses de novo lipogenesis through HDAC3-mediated epigenetic reprogramming in prostate cancer. Nat Genet. 2022;54:670–83.
doi: 10.1038/s41588-022-01045-8 pubmed: 35468964 pmcid: 9117466
Fong KW, Zhao JC, Lu X, Kim J, Piunti A, Shilatifard A, et al. PALI1 promotes tumor growth through competitive recruitment of PRC2 to G9A-target chromatin for dual epigenetic silencing. Mol Cell. 2022;82:4611–26.e7.
doi: 10.1016/j.molcel.2022.11.010 pubmed: 36476474
Park SH, Fong KW, Kim J, Wang F, Lu X, Lee Y, et al. Posttranslational regulation of FOXA1 by Polycomb and BUB3/USP7 deubiquitin complex in prostate cancer. Sci Adv. 2021;7:eabe2261.
doi: 10.1126/sciadv.abe2261 pubmed: 33827814 pmcid: 8026124
Fong KW, Zhao JC, Song B, Zheng B, Yu J. TRIM28 protects TRIM24 from SPOP-mediated degradation and promotes prostate cancer progression. Nat Commun. 2018;9:5007.
doi: 10.1038/s41467-018-07475-5 pubmed: 30479348 pmcid: 6258673
Li S, Fong KW, Gritsina G, Zhang A, Zhao JC, Kim J, et al. Activation of MAPK signaling by CXCR7 leads to enzalutamide resistance in prostate cancer. Cancer Res. 2019;79:2580–92.
doi: 10.1158/0008-5472.CAN-18-2812 pubmed: 30952632 pmcid: 6522281

Auteurs

Zhuoyuan Lin (Z)

Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.

Shivani Agarwal (S)

Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.

Song Tan (S)

Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.

Hongshun Shi (H)

Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.

Xiaodong Lu (X)

Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.

Zhipeng Tao (Z)

Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.

Xuesen Dong (X)

Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.

Xu Wu (X)

Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.

Jonathan C Zhao (JC)

Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.

Jindan Yu (J)

Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. jindan.yu@emory.edu.
Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA. jindan.yu@emory.edu.
Department of Urology, Emory University School of Medicine, Atlanta, GA, USA. jindan.yu@emory.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH