A new global fibrinolysis capacity assay for the sensitive detection of hyperfibrinolysis and hypofibrinogenemia in trauma patients.
clot lysis time
fibrinogen
fibrinolysis
thrombelastography
trauma
Journal
Journal of thrombosis and haemostasis : JTH
ISSN: 1538-7836
Titre abrégé: J Thromb Haemost
Pays: England
ID NLM: 101170508
Informations de publication
Date de publication:
10 2023
10 2023
Historique:
received:
14
01
2023
revised:
14
04
2023
accepted:
05
05
2023
medline:
25
9
2023
pubmed:
20
5
2023
entrez:
19
5
2023
Statut:
ppublish
Résumé
Conventional clotting tests are not expeditious enough to allow timely targeted interventions in trauma, and current point-of-care analyzers, such as rotational thromboelastometry (ROTEM), have limited sensitivity for hyperfibrinolysis and hypofibrinogenemia. To evaluate the performance of a recently developed global fibrinolysis capacity (GFC) assay in identifying fibrinolysis and hypofibrinogenemia in trauma patients. Exploratory analysis of a prospective cohort of adult trauma patients admitted to a single UK major trauma center and of commercially available healthy donor samples was performed. Lysis time (LT) was measured in plasma according to the GFC manufacturer's protocol, and a novel fibrinogen-related parameter (percentage reduction in GFC optical density from baseline at 1 minute) was derived from the GFC curve. Hyperfibrinolysis was defined as a tissue factor-activated ROTEM maximum lysis of >15% or LT of ≤30 minutes. Compared to healthy donors (n = 19), non-tranexamic acid-treated trauma patients (n = 82) showed shortened LT, indicative of hyperfibrinolysis (29 minutes [16-35] vs 43 minutes [40-47]; p < .001). Of the 63 patients without overt ROTEM-hyperfibrinolysis, 31 (49%) had LT of ≤30 minutes, with 26% (8 of 31) of them requiring major transfusions. LT showed increased accuracy compared to maximum lysis in predicting 28-day mortality (area under the receiver operating characteristic curve, 0.96 [0.92-1.00] vs 0.65 [0.49-0.81]; p = .001). Percentage reduction in GFC optical density from baseline at 1 minute showed comparable specificity (76% vs 79%) to ROTEM clot amplitude at 5 minutes from tissue factor-activated ROTEM with cytochalasin D in detecting hypofibrinogenemia but correctly reclassified >50% of the patients with false negative results, leading to higher sensitivity (90% vs 77%). Severe trauma patients are characterized by a hyperfibrinolytic profile upon admission to the emergency department. The GFC assay is more sensitive than ROTEM in capturing hyperfibrinolysis and hypofibrinogenemia but requires further development and automation.
Sections du résumé
BACKGROUND
Conventional clotting tests are not expeditious enough to allow timely targeted interventions in trauma, and current point-of-care analyzers, such as rotational thromboelastometry (ROTEM), have limited sensitivity for hyperfibrinolysis and hypofibrinogenemia.
OBJECTIVES
To evaluate the performance of a recently developed global fibrinolysis capacity (GFC) assay in identifying fibrinolysis and hypofibrinogenemia in trauma patients.
METHODS
Exploratory analysis of a prospective cohort of adult trauma patients admitted to a single UK major trauma center and of commercially available healthy donor samples was performed. Lysis time (LT) was measured in plasma according to the GFC manufacturer's protocol, and a novel fibrinogen-related parameter (percentage reduction in GFC optical density from baseline at 1 minute) was derived from the GFC curve. Hyperfibrinolysis was defined as a tissue factor-activated ROTEM maximum lysis of >15% or LT of ≤30 minutes.
RESULTS
Compared to healthy donors (n = 19), non-tranexamic acid-treated trauma patients (n = 82) showed shortened LT, indicative of hyperfibrinolysis (29 minutes [16-35] vs 43 minutes [40-47]; p < .001). Of the 63 patients without overt ROTEM-hyperfibrinolysis, 31 (49%) had LT of ≤30 minutes, with 26% (8 of 31) of them requiring major transfusions. LT showed increased accuracy compared to maximum lysis in predicting 28-day mortality (area under the receiver operating characteristic curve, 0.96 [0.92-1.00] vs 0.65 [0.49-0.81]; p = .001). Percentage reduction in GFC optical density from baseline at 1 minute showed comparable specificity (76% vs 79%) to ROTEM clot amplitude at 5 minutes from tissue factor-activated ROTEM with cytochalasin D in detecting hypofibrinogenemia but correctly reclassified >50% of the patients with false negative results, leading to higher sensitivity (90% vs 77%).
CONCLUSION
Severe trauma patients are characterized by a hyperfibrinolytic profile upon admission to the emergency department. The GFC assay is more sensitive than ROTEM in capturing hyperfibrinolysis and hypofibrinogenemia but requires further development and automation.
Identifiants
pubmed: 37207863
pii: S1538-7836(23)00417-8
doi: 10.1016/j.jtha.2023.05.005
pii:
doi:
Substances chimiques
Thromboplastin
9035-58-9
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2759-2770Commentaires et corrections
Type : CommentIn
Informations de copyright
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of competing interests There are no competing interests to disclose.