Resource allocation in a PDE ecosystem model.

Habitat heterogeneity Optimal control theory Resource allocation Spatial ecology

Journal

Journal of mathematical biology
ISSN: 1432-1416
Titre abrégé: J Math Biol
Pays: Germany
ID NLM: 7502105

Informations de publication

Date de publication:
22 05 2023
Historique:
received: 01 06 2022
accepted: 03 05 2023
revised: 01 05 2023
medline: 24 5 2023
pubmed: 23 5 2023
entrez: 22 5 2023
Statut: epublish

Résumé

The effects of habitat heterogeneity on a diffusing population are investigated here. We formulate a reaction-diffusion system of partial differential equations to analyze the effect of resource allocation in an ecosystem with resource having its own dynamics in space and time. We show a priori estimates to prove the existence of state solutions given a control. We formulate an optimal control problem of our ecosystem model such that the abundance of a single species is maximized while minimizing the cost of inflow resource allocation. In addition, we show the existence and uniqueness of the optimal control as well as the optimal control characterization. We also establish the existence of an optimal intermediate diffusion rate. Moreover, we illustrate several numerical simulations with Dirichlet and Neumann boundary conditions with the space domain in 1D and 2D.

Identifiants

pubmed: 37217639
doi: 10.1007/s00285-023-01932-6
pii: 10.1007/s00285-023-01932-6
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

96

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Antil H, Kouri DP, Lacasse M-D, Ridzal D (2018) Frontiers in PDE-constrained optimization, volume 163. Springer, Berlin
Bintz J, Lenhart S (2020) Optimal resource allocation for a diffusive population model. J Biol Syst 28(04):945–976
doi: 10.1142/S0218339020500230
Borzì A, González AS (2015) Second-order approximation and fast multigrid solution of parabolic bilinear optimization problems. Adv Comput Math 41(2):457–488
doi: 10.1007/s10444-014-9369-9
Borzì A, Schulz V (2011) Computational optimization of systems governed by partial differential equations. SIAM, Philadelphia
Borzì A, Park E-J, Lass MV (2016) Multigrid optimization methods for the optimal control of convection-diffusion problems with bilinear control. J Optim Theory Appl 168(2):510–533
doi: 10.1007/s10957-015-0791-z
Brezis H (2010) Functional analysis, Sobolev spaces and partial differential equations. Springer Science & Business Media, Berlin
Cantrell RS, Cosner C (1991) The effects of spatial heterogeneity in population dynamics. J Math Biol 29(4):315–338
doi: 10.1007/BF00167155
Cantrell RS, Cosner C (2004) Spatial ecology via reaction-diffusion equations. Wiley, New York
doi: 10.1002/0470871296
De Moura CA, Kubrusly CS (2013) The Courant–Friedrichs–Lewy (CFL) condition. Appl Math Comput 10(12)
DeAngelis DL, Ni W-M, Zhang B (2016) Dispersal and spatial heterogeneity: single species. J Math Biol 72(1–2):239–254
doi: 10.1007/s00285-015-0879-y
DeAngelis DL, Zhang B, Ni W-M, Wang Y (2020) Carrying capacity of a population diffusing in a heterogeneous environment. Mathematics 8(1):49
doi: 10.3390/math8010049
Ding W, Finotti H, Lenhart S, Lou Y, Ye Q (2010) Optimal control of growth coefficient on a steady-state population model. Nonlinear Anal Real World Appl 11(2):688–704
doi: 10.1016/j.nonrwa.2009.01.015
Evans LC (2010) Partial differential equations, volume 19. American Mathematical Soc
Friedman A (1982) Foundations of modern analysis. Courier Corporation
Hackbusch W (1978) A numerical method for solving parabolic equations with opposite orientations. Computing 20(3):229–240
doi: 10.1007/BF02251947
He X, Lam K-Y, Lou Y, Ni W-M (2019) Dynamics of a consumer-resource reaction-diffusion model. J Math Biol 78(6):1605–1636
doi: 10.1007/s00285-018-1321-z
Heinkenschloss M, Herty M (2007) A spatial domain decomposition method for parabolic optimal control problems. J Comput Appl Math 201(1):88–111
doi: 10.1016/j.cam.2006.02.002
Krylov N (1987) Nonlinear elliptic and parabolic equations of the second order. Springer, Berlin
doi: 10.1007/978-94-010-9557-0
Kunisch K, Leugering G, Sprekels J, Tröltzsch F (2009) Optimal control of coupled systems of partial differential equations, vol 158. Springer Science & Business Media, Berlin
doi: 10.1007/978-3-7643-8923-9
Lenhart S, Workman JT (2007) Optimal control applied to biological models. CRC Press, Boca Raton
doi: 10.1201/9781420011418
Lenhart S, Liang M, Protopopescu V (1999) Optimal control of boundary habitat hostility for interacting species. Math Methods Appl Sci 22(13):1061–1077
doi: 10.1002/(SICI)1099-1476(19990910)22:13<1061::AID-MMA70>3.0.CO;2-I
Loreau M (2010) From populations to ecosystems: theoretical foundations for a new ecological synthesis (MPB-46), vol 46. Princeton University Press, Princeton
doi: 10.1515/9781400834167
Lou Y (2006) On the effects of migration and spatial heterogeneity on single and multiple species. J Differ Equ 223(2):400–426
doi: 10.1016/j.jde.2005.05.010
Neilan RM, Lenhart S (2011) Optimal vaccine distribution in a spatiotemporal epidemic model with an application to rabies and raccoons. J Math Anal Appl 378(2):603–619
doi: 10.1016/j.jmaa.2010.12.035
Pulliam HR, Danielson BJ (1991) Sources, sinks, and habitat selection: a landscape perspective on population dynamics. Am Nat 137:S50–S66
doi: 10.1086/285139
Fister KR (2001) Optimal control of harvesting coupled with boundary control in a predator-prey system. Appl Anal 77(1–2):11–28
doi: 10.1080/00036810108840893
Simon J (1986) Compact sets in the space [Formula: see text]. Annali di Matematica 146(1):65–96
doi: 10.1007/BF01762360
Skellam JG (1951) Random dispersal in theoretical populations. Biometrika 38(1/2):196–218
doi: 10.2307/2332328
Zhang B, Liu X, DeAngelis DL, Ni W-M, Wang GG (2015) Effects of dispersal on total biomass in a patchy, heterogeneous system: analysis and experiment. Math Biosci 264:54–62
doi: 10.1016/j.mbs.2015.03.005
Zhang B, Kula A, Mack KM, Zhai L, Ryce AL, Ni W-M, DeAngelis DL, Van Dyken JD (2017) Carrying capacity in a heterogeneous environment with habitat connectivity. Ecol Lett 20(9):1118–1128
doi: 10.1111/ele.12807
Zhang B, DeAngelis DL, Ni W-M, Wang Y, Zhai L, Kula A, Xu S, Van Dyken JD (2020) Effect of stressors on the carrying capacity of spatially distributed metapopulations. Am Nat 196(2):E46–E60
doi: 10.1086/709293
Zhang B, Zhai L, Bintz J, Lenhart SM, Valega-Mackenzie W, Van Dyken JD (2021) The optimal controlling strategy on a dispersing population in a two-patch system: experimental and theoretical perspectives. J Theor Biol 528:110835
doi: 10.1016/j.jtbi.2021.110835

Auteurs

Wencel Valega-Mackenzie (W)

Department of Mathematics, University of Tennessee Knoxville, Knoxville, 37996, TN, USA. wenvalegam@gmail.com.

Jason Bintz (J)

School of Arts and Sciences, Johnson University, Knoxville, 37998, TN, USA.

Suzanne Lenhart (S)

Department of Mathematics, University of Tennessee Knoxville, Knoxville, 37996, TN, USA.

Articles similaires

High-throughput Bronchus-on-a-Chip system for modeling the human bronchus.

Akina Mori, Marjolein Vermeer, Lenie J van den Broek et al.
1.00
Humans Bronchi Lab-On-A-Chip Devices Epithelial Cells Goblet Cells
Lakes Salinity Archaea Bacteria Microbiota
Rivers Turkey Biodiversity Environmental Monitoring Animals
1.00
Iran Environmental Monitoring Seasons Ecosystem Forests

Classifications MeSH